视频智能分析发展历程
国内的视频监控从2006前后开始“监控IT化”以来,视频监控的规模呈现了快速扩展的势头,这在模拟时代是无法想象的。视频监控规模的扩大,已经让使用者意识到单靠人眼去监控所有视频或者在事后去追查录像都是基本不可能的事情了。2009~2010年国内视频监控发展比较好的地区如浙江,就开始出现了如何更好的应用视频的需求声音。
从2010年前后起,智能分析已经在慢慢地应用到监控和智能交通的行业中来,其中最早形成规模应用的是车牌识别的功能,到2013年左右,电子警察在全国就在如火如荼地展开,三大监控巨头和在那个时候大力切入到了智能交通行业,加速了行业格局的形成。 这几年来,智能的应用快速扩展到了很多的方面,如人的行为识别、车辆的异常行为检测、仪表识别、人脸识别、车脸识别,还有通用监控视频的结构化分析等,花样各出,大有遍地开花之势。
这几年来,智能的应用快速扩展到了很多的方面,如人的行为识别、车辆的异常行为检测、仪表识别、人脸识别、车脸识别,还有通用监控视频的结构化分析等,花样各出,大有遍地开花之势。
智能分析的本质
视频分析的本质目标,就是视频的语义化,使视频更好地被检索到,被精确调阅到,解决人眼长期看视频产生的熟视无睹的问题,也解决发生案件时要花上百人进行录像查阅的问题。
前端智能分析与后端智能分析对比
前端智能分析与后端智能分析的关系,是相辅相成的,互为补充的。
前端智能分析
前端智能分析,在安防的业内一般是指在摄像机等传感器内置或者在传感器附近放置一个专门分析的前置设备。前端智能分析的优势是离采集端近,分析比较及时,通过前置的智能分析可以有效降低需要传输的数据的量。同时前端智能也受限于较弱的计算资源和有限的空间,再好的智能分析技术到前端也都是“龙居浅潭”。当下前端智能中最成熟也是上面说的智能方面最早成熟的车牌识别功能了,现在前端设备上车牌识别的准度已经达到了99%。
后端智能分析
后端智能分析是指用后端服务器的方案进行智能分析,也是当前比较主流的智能分析方案,业界的代表有千视通的视频结构化服务器等。
由于智能的需求越来越大,智能需求的种类也越来越多,各种智能服务器会慢慢占领客户的机房,因此如何综合利用这些服务器资源,如何提升单位空间的计算能力是众多厂家关注和研究的方向,从当前来看主要的方向是:硬件化、框架化、集群化。
硬件化,智能分析的硬件化是一些智能分析技术逐渐成熟的必然方向,现在的深度学习经过几年的发展已经表现出了强劲的发展前景,而且智能硬件只要能很好地承载深度学习的计算需求,就能应对绝大部分基于深度学习发展起来的具体智能分析技术,比如现在一个很典型的应用就是人脸识别的应用,用了GPU之后,性能可以翻很多倍。
框架化,因为智能算法越来越多,如果为每一款智能算法单独开发一次软件,那软件的工作就会有很多的浪费,如何能够开发一次软件,然后尽量多地去适配各种算法对厂家和客户来说都是比较有意义的事情。
集群化,既然智能分析的需求越来越大,那么这些服务器如何统一管理,如何统一进行资源分配又是一个比较棘手的事情,总不能让客户自己一台一台服务器去做配置,一台一台去做管理吧。集群化的需求就应运而生,它需要解决的问题有:统一管理各个服务器,进行统一的配置;动态解决各个服务器的资源和任务分配问题,避免客户自行去选择服务器;解决设备的灾备问题,在有多台设备的时候,不要因为一台设备的失效而导致它所负责的业务不可运行。
除了专门的智能服务器,现在有很多的后端产品也开始内置简单的智能功能了,比如很多新的NVR已经具备了不少的智能分析能力,在小规模的方案里这种产品形态将越来越有市场。
前后端融合计算 前后端的智能分析不是完全割裂和互斥的,两者都是“抓得住老鼠”的好猫,但是如何把他们合在一起适当分工是不是能成为更强大,更高效的猫呢?答案是肯定的。
前端是存在计算性能上的不足,存在空间上的拘束,但是它还是能承担一些分析工作的,而且最重要的是它的保有量大,每台做一点基础的分析工作,后台再在这些分析的成果基础之上做进一步的分析,将能大大降低后端服务器的工作压力。典型的,如现在的人脸智能分析方案中,如果采用后端引前端实况流分析的方案,一台E5的服务器能做到4~5路已经很高了;但是同样的服务器如果用前后端融合的方案,前端负责人脸的跟踪和抓拍,后端负责分析,一台服务器就能做到24路甚至更高,这就能大大降低用户的部署成本。
当前,阻挡前后端方案融合的最大障碍是标准的问题,各个厂家都是按照自己的理解定义接口,定义边界,厂家之间互通的唯一方式就是对接开发;因此,现在如果涉及到跨厂家的智能分析都更多的还是采用纯后端或者纯前端的方案,这是智能发展需要解决的重要问题。