二十大数据可视化工具点评
如今学习应用数据可视化的渠道有很多,你可以跟踪一些专家博客,但更重要的一点是实践/实操,你必须对目前可用的数据可视化工具有个大致了解。以下是Netmagzine列举的二十大数据可视化工具,无论你是准备制作简单的图表还是复杂的图谱或者信息图,这些工具都能满足你的需要。更加美妙的是,这些工具大多免费。
Excel的图形化功能并不强大,但Excel是分析数据的理想工具,上图是Excel生成的热力地图
作为一个入门级工具,Excel是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上可选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。但是作为一个高效的内部沟通工具,Excel应当是你百宝箱中必备的工具之一。
CSV(逗号分隔值)和JSON(JavaScript对象注释)虽然并不是真正的可视化工具,但却是常见的数据格式。你必须理解他们的结构,并懂得如何从这些文件中导入或者导出数据。以下将要介绍的所有数据可视化工具都支持CSV、JSON中至少一种格式。
Google Chart API工具集中取消了静态图片功能,目前只提供动态图表工具。能够在所有支持SVG\Canvas和VML的浏览器中使用,但是Google Chart的一个大问题是:图表在客户端生成,这意味着那些不支持JavaScript的设备将无法使用,此外也无法离线使用或者将结果另存其他格式,之前的静态图片就不存在这个问题。尽管存在上述问题,不可否认的是Google Chart API的功能异常丰富,如果没有特别的定制化需要,或者对Google视觉风格的抵触,那么你大可以从Google Chart开始。
Flot
Raphaël
D3
如果你需要制作信息图而不仅仅是数据可视化,目前也有大把的工具可用。 Visual.ly
如果数据可视化的互动性强大到可以作为GUI界面会怎样?随着在线数据可视化的发展,按钮、下拉列表和滑块都在进化成更加复杂的界面元素,例如能够调整数据范围的互动图形元素,推拉这些图形元素时输入参数和输出结果数据会同步改变,在这种情况下,图形控制和内容已经合为一体。以下这些工具能够帮你实现这些功能:
当我们为方便客户浏览数据开发出更加复杂的工具时,我们已经能够创建出既是图表,又是互动图形用户界面的小程序。JavaScript库 Crossfilter
Crossfilter应用:当你调整一个图表中的输入范围时,其他关联图表的数据也会随之改变。
JavaScript库 Tangle
地图生成是web上最困难的任务之一。Google Maps的出现完全颠覆了过去人们对在线地图功能的认识。而Google发布的 Maps API
近年来,在线地图的市场成熟了很多,如果你需要在数据可视化项目中植入定制化的地图方案,目前市场上已经有很多选择,但是知道在何时选择何种地图方案则成了一个很关键的业务决策。地图方案看上去功能都很强大,但是切忌:“有了一把锤子,看什么都像钉子。”
顾名思义, Modest Maps
CloudMade团队为大家带来了 Leaflet
Polymaps
OpenLayers
Kartograph的标记线是对地图绘制的重新思考,我们都已经习惯了莫卡托投影( Mercator projection
CartoDB
(随着iPad3等高清移动设备的普及)web开发的一个最新趋势是将符号字体与字体整合(把符号变成字体),创建出漂亮的矢量化图标。在这些新型字体中,例如 FF Chartwell
如果你准备用数据可视化做一些“严肃”的工作,那么你可能不会对在线可视化工具或者web小程序有太大兴趣,你需要的是桌面应用和编程环境。
Processing
NodeBox
与Excel相对的是专业数据分析工具。如果你是一个专业的数据分析师,那么你就必须对下面将要介绍的工具有所了解(如果不是精通的话)。众所周知, SPSS
作为用来分析大数据集的统计组件包,R是一个非常复杂的工具,需要较长的学习实践,学习曲线也是本文所介绍工具中最陡峭的。但是R拥有强大的社区和组件库,而且还在不断成长。当你能驾驭R的时候,一切付出都是物有所值的。
当你成长成一名数据科学家的时候,你需要将个人能力从数据可视化扩展到数据挖掘领域。Weka是一个能根据属性分类和集群大量数据的优秀工具,Weka不但是数据分析的强大工具,还能生成一些简单的图表。
Gephi