Hadoop在处理海量数据分析方面具有独天优势。今天花时间在自己的Linux上搭建了伪分布模式,期间经历很多曲折,现在将经验总结如下。
首先,了解Hadoop的三种安装模式:
1. 单机模式. 单机模式是Hadoop的默认模。当配置文件为空时,Hadoop完全运行在本地。因为不需要与其他节点交互,单机模式就不使用HDFS,也不加载任何Hadoop的守护进程。该模式主要用于开发调试MapReduce程序的应用逻辑。
2. 伪分布模式. Hadoop守护进程运行在本地机器上,模拟一个小规模的的集群。该模式在单机模式之上增加了代码调试功能,允许你检查内存使用情况,HDFS输入输出,以及其他的守护进程交互。
3. 全分布模式. Hadoop守护进程运行在一个集群上。
参考资料:
1. Ubuntu11.10下安装Hadoop1.0.0(单机伪分布式)
5. Ubuntu上搭建Hadoop环境(单机模式+伪分布模式)
6. Hadoop的快速入门之 Ubuntu上搭建Hadoop环境(单机模式+伪分布模式)
本人极力推荐5和6,这两种教程从简到难,步骤详细,且有运行算例。下面我就将自己的安装过程大致回顾一下,为省时间,很多文字粘贴子参考资料5和6,再次感谢两位作者分享自己的安装经历。另外,下面的三篇文章可以从整体上把握Hadoop的结构,使你能够理解为什么要这么这么做。
我的安装的是ubuntu12.o4, 用户名derek, 机器名称是derekUbn, Hadoop的版本Hadoop-1.1.2.tar.gz,闲话少说,步骤和每一步的图示如下:
一、在Ubuntu下创建hadoop用户组和用户
1.添加hadoop用户到系统用户
derek@derekUbun:~$ sudo addgroup hadoop
derek@derekUbun:~$ sudo adduser --ingroup hadoop hadoop
2. 现在只是添加了一个用户hadoop,它并不具备管理员权限,我们给hadoop用户添加权限,打开/etc/sudoers文件
derek@derekUbun:~$ sudo gedit /etc/sudoers
在root ALL=(ALL:ALL) ALL下添加hadoop ALL=(ALL:ALL) ALL
二、配置SSH
配置SSH是为了实现各机器之间执行指令无需输入登录密码。务必要避免输入密码,否则,主节点每次试图访问其他节点时,都需要手动输入这个密码。
SSH无密码原理:master(namenode/jobtrack)作为客户端,要实现无密码公钥认证,连接到服务器slave(datanode/tasktracker)上时,需要在master上生成一个公钥对,包括一个公钥和一个私钥,而后将公钥复制到所有的slave上。当master通过SSH连接slave时,slave就会生成一个随机数并用master的公钥对随机数进行加密,并发送给master。Master收到密钥加密数之后再用私钥解密,并将解密数回传给slave,slave确认解密数无误后就允许master进行连接了。这就是一个公钥认证的过程,期间不需要用户手工输入密码。重要过程是将客户端master复制到slave上。1、安装ssh
1) 由于Hadoop用ssh通信,先安装ssh. 注意,我先从derek用户转到了hadoop.
derek@derekUbun:~$ su - hadoop
密码:
hadoop@derekUbun:~$ sudo apt-get install openssh-server
[sudo] password for hadoop:
正在读取软件包列表... 完成
正在分析软件包的依赖关系树
正在读取状态信息... 完成
openssh-server 已经是最新的版本了。
下列软件包是自动安装的并且现在不需要了:
kde-l10n-de language-pack-kde-de language-pack-kde-en ssh-krb5
language-pack-de-base language-pack-kde-zh-hans language-pack-kde-en-base
kde-l10n-engb language-pack-kde-de-base kde-l10n-zhcn firefox-locale-de
language-pack-de language-pack-kde-zh-hans-base
使用'apt-get autoremove'来卸载它们
升级了 0 个软件包,新安装了 0 个软件包,要卸载 0 个软件包,有 505 个软件包未被升级。
因为我的机器已安装最新版的ssh,因此这一步实际上什么也没做。
2) 假设ssh安装完成,先启动服务。启动后,可以通过命令查看服务是否正确启动:
hadoop@derekUbun:~$ sudo /etc/init.d/ssh start
Rather than invoking init scripts through /etc/init.d, use the service(8)
utility, e.g. service ssh start
Since the script you are attempting to invoke has been converted to an
Upstart job, you may also use the start(8) utility, e.g. start ssh
hadoop@derekUbun:~$ ps -e |grep ssh
759 ? 00:00:00 sshd
1691 ? 00:00:00 ssh-agent
12447 ? 00:00:00 ssh
12448 ? 00:00:00 sshd
12587 ? 00:00:00 sshd
hadoop@derekUbun:~$
3) 作为一个安全通信协议(ssh生成密钥有rsa和dsa两种生成方式,默认情况下采用rsa方式),使用时需要密码,因此我们要设置成免密码登录,生成私钥和公钥:
hadoop@derekUbun:~$ ssh-keygen -t rsa -P ""
Generating public/private rsa key pair.
Enter file in which to save the key (/home/hadoop/.ssh/id_rsa):
/home/hadoop/.ssh/id_rsa already exists.
Overwrite (y/n)? y
Your identification has been saved in /home/hadoop/.ssh/id_rsa.
Your public key has been saved in /home/hadoop/.ssh/id_rsa.pub.
The key fingerprint is:
c7:36:c7:77:91:a2:32:28:35:a6:9f:36:dd:bd:dc:4f hadoop@derekUbun
The key's randomart image is:
+--[ RSA 2048]----+
| |
| .|
| + . o |
| + o. .. . .|
| o .So=.o . .|
| o oo+o.. . |
| = . . . E|
| . . . o. |
| o .o|
+-----------------+
hadoop@derekUbun:~$
(注:回车后会在~/.ssh/下生成两个文件:id_rsa和id_rsa.pub这两个文件是成对出现的前者为私钥,后者为公钥)
进入~/.ssh/目录下,将公钥id_rsa.pub追加到authorized_keys授权文件中,开始是没有authorized_keys文件的(authorized_keys 用于保存所有允许以当前用户身份登录到ssh客户端用户的公钥内容):
hadoop@derekUbun:~$ cat ~/.ssh/id_rsa.pub>> ~/.ssh/authorized_keys
现在可以登入ssh确认以后登录时不用输入密码:
hadoop@derekUbun:~$ ssh localhost
Welcome to Ubuntu 12.04 LTS (GNU/Linux 3.2.0-27-generic-pae i686)
* Documentation: https://help.ubuntu.com/
512 packages can be updated.
151 updates are security updates.
Last login: Mon Mar 11 15:56:15 2013 from localhost
hadoop@derekUbun:~$
( 注:当ssh远程登录到其它机器后,现在你控制的是远程的机器,需要执行退出命令才能重新控制本地主机。)
登出:~$ exit
这样以后登录就不用输入密码了。
hadoop@derekUbun:~$ exit
Connection to localhost closed.
hadoop@derekUbun:~$
三、安装Java
使用derek用户,安装java. 因为我的电脑上已安装java,其安装目录是/usr/java/jdk1.7.0_17,可以显示我的这个安装版本。
hadoop@derekUbun:~$ su - derek
密码:
derek@derekUbun:~$ java -version
java version "1.7.0_17"
Java(TM) SE Runtime Environment (build 1.7.0_17-b02)
Java HotSpot(TM) Server VM (build 23.7-b01, mixed mode)
四、安装hadoop-1.1.2
到官网下载hadoop源文件,我下载的是最新版本 jdk-7u17-linux-i586.tar.gz,将其解压并放到希望的目录中。我把 jdk-7u17-linux-i586.tar.gz放到/usr/local/hadoop,并将解压后的文件夹重命名为hadoop。
hadoop@derekUbun:/usr/local$ sudo tar xzf hadoop-1.1.2.tar.gz (注意,我已将hadoop-1.1.2.tar.gz拷贝到usr/local/hadoop,然后转到hadoop用户上)
hadoop@derekUbun:/usr/local$ sudo mv hadoop-1.1.2 /usr/local/hadoop
要确保所有的操作都是在用户hadoop下完成的,所以将该hadoop文件夹的属主用户设为hadoop
hadoop@derekUbun:/usr/local$ sudo chown -R hadoop:hadoop hadoop
五、配置hadoop-env.sh(Java 安装路径)
进入用hadoop用户登录,进入/usr/localhadoop目录,打开conf目录的hadoop-env.sh,添加以下信息:(找到#export JAVA_HOME=...,去掉#,然后加上本机jdk的路径)
export JAVA_HOME=/usr/java/jdk1.7.0_17 (视你机器的java安装路径而定,我的java安装目录是/usr/java/jdk1.7.0_17)
export HADOOP_INSTALL=/usr/local/hadoop( 注意,我这里用的HADOOP_INSTALL,而不是HADOOP_HOME,因为在新版中后者已经不用了。若用,会有警告)
export PATH=$PATH:/usr/local/hadoop/bin
hadoop@derekUbun:/usr/local/hadoop$ sudo vi conf/hadoop-env.sh
# Set Hadoop-specific environment variables here.
# The only required environment variable is JAVA_HOME. All others are
# optional. When running a distributed configuration it is best to
# set JAVA_HOME in this file, so that it is correctly defined on
# remote nodes.
# The java implementation to use. Required.
# export JAVA_HOME=/usr/lib/j2sdk1.5-sun
export JAVA_HOME=/usr/java/jdk1.7.0_17
export HADOOP_INSTALL=/usr/local/hadoop
export PATH=$PATH:/usr/local/hadoop/bin
# Extra Java CLASSPATH elements. Optional.
# export HADOOP_CLASSPATH=
# The maximum amount of heap to use, in MB. Default is 1000.
# export HADOOP_HEAPSIZE=2000
# Extra Java runtime options. Empty by default.
# export HADOOP_OPTS=-server
"conf/hadoop-env.sh" 57L, 2356C
并且,让环境变量配置生效source
hadoop@derekUbun:/usr/local/hadoop$ source /usr/local/hadoop/conf/hadoop-env.sh
至此,hadoop的单机模式已经安装成功。可以显示Hadoop版本如下
hadoop@derekUbun:/usr/local/hadoop$ hadoop version
Hadoop 1.1.2
Subversion https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.1 -r 1440782
Compiled by hortonfo on Thu Jan 31 02:03:24 UTC 2013
From source with checksum c720ddcf4b926991de7467d253a79b8b
hadoop@derekUbun:/usr/local/hadoop$
现在运行一下hadoop自带的例子WordCount来感受以下MapReduce过程:
在hadoop目录下新建input文件夹
hadoop@derekUbun:/usr/local/hadoop$ mkdir input
将conf中的所有文件拷贝到input文件夹中
hadoop@derekUbun:/usr/local/hadoop$ cp conf/* input
运行WordCount程序,并将结果保存到output中
hadoop@derekUbun:/usr/local/hadoop$ bin/hadoop jar hadoop-examples-1.1.2.jar wordcount input output
运行
hadoop@derekUbun:/usr/local/hadoop$ cat output/*
会看到conf所有文件的单词和频数都被统计出来。
六、 伪分布模式的一些配置
这里需要设定3个文件:core-site.xml hdfs-site.xml mapred-site.xml,都在/usr/local/hadoop/conf目录下
core-site.xml: Hadoop Core的配置项,例如HDFS和MapReduce常用的I/O设置等。
hdfs-site.xml: Hadoop 守护进程的配置项,包括namenode,辅助namenode和datanode等。
mapred-site.xml: MapReduce 守护进程的配置项,包括jobtracker和tasktracker。
1.编辑三个文件:
1). core-site.xml:
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/usr/local/hadoop/tmp</value>
</property>
</configuration>
2).hdfs-site.xml:
<configuration>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.name.dir</name>
<value>/usr/local/hadoop/datalog1,/usr/local/hadoop/datalog2</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>/usr/local/hadoop/data1,/usr/local/hadoop/data2</value>
</property>
</configuration>
3). mapred-site.xml:
<configuration>
<property>
<name>mapred.job.tracker</name>
<value>localhost:9001</value>
</property>
</configuration>
2. 启动Hadoop到相关服务,格式化namenode, secondarynamenode, tasktracker:
hadoop@derekUbun:/usr/local/hadoop$ source /usr/local/hadoop/conf/hadoop-env.sh
hadoop@derekUbun:/usr/local/hadoop$ hadoop namenode -format
看到下面的信息就说明hdfs文件系统格式化成功了
13/03/11 23:08:01 INFO common.Storage: Storage directory /usr/local/hadoop/datalog2 has been successfully formatted.
13/03/11 23:08:01 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at derekUbun/127.0.1.1
************************************************************/
3. 启动Hadoop
接着执行start-all.sh来启动所有服务,包括namenode,datanode,start-all.sh脚本用来装载守护进程。用Java的jps命令列出所有守护进程来验证安装成功,出现如下列表,表明成功.
hadoop@derekUbun:/usr/local/hadoop$ cd bin
hadoop@derekUbun:/usr/local/hadoop/bin$ start-all.sh
starting namenode, logging to /usr/local/hadoop/libexec/../logs/hadoop-hadoop-namenode-derekUbun.out
localhost: starting datanode, logging to /usr/local/hadoop/libexec/../logs/hadoop-hadoop-datanode-derekUbun.out
localhost: starting secondarynamenode, logging to /usr/local/hadoop/libexec/../logs/hadoop-hadoop-secondarynamenode-derekUbun.out
starting jobtracker, logging to /usr/local/hadoop/libexec/../logs/hadoop-hadoop-jobtracker-derekUbun.out
localhost: starting tasktracker, logging to /usr/local/hadoop/libexec/../logs/hadoop-hadoop-tasktracker-derekUbun.out
hadoop@derekUbun:/usr/local/hadoop/bin$
用Java的jps命令列出所有守护进程来验证安装成功
hadoop@derekUbun:/usr/local/hadoop$ jps
出现如下列表,表明成功
hadoop@derekUbun:/usr/local/hadoop$ jps
8431 JobTracker
8684 TaskTracker
7821 NameNode
8915 Jps
8341 SecondaryNameNode
hadoop@derekUbun:/usr/local/hadoop$
4. 检查运行状态
所有的设置已完成,Hadoop也启动了,现在可以通过下面的操作来查看服务是否正常,在Hadoop中用于监控集群健康状态的Web界面:
http://localhost:50030/ - Hadoop 管理介面
http://localhost:50060/ - Hadoop Task Tracker 状态
http://localhost:50070/ - Hadoop DFS 状态
至此,hadoop的伪分布模式已经安装成功,于是,再次在伪分布模式下运行一下hadoop自带的例子WordCount来感受以下MapReduce过程:
这时注意程序是在文件系统dfs运行的,创建的文件也都基于文件系统:
首先在dfs中创建input目录
hadoop@derekUbun:/usr/local/hadoop$ hadoop dfs -mkdir input
将conf中的文件拷贝到dfs中的input
hadoop@derekUbun:/usr/local/hadoop$ hadoop dfs -copyFromLocal conf/* input
(注:可以使用查看和删除hadoop dfs中的文件)
在伪分布式模式下运行WordCount
hadoop jar hadoop-examples-1.1.2.jar wordcount input output
hadoop@derekUbun:/usr/local/hadoop$ hadoop jar hadoop-examples-1.1.2.jar wordcount input output
13/03/12 09:26:05 INFO input.FileInputFormat: Total input paths to process : 16
13/03/12 09:26:05 INFO util.NativeCodeLoader: Loaded the native-hadoop library
13/03/12 09:26:05 WARN snappy.LoadSnappy: Snappy native library not loaded
13/03/12 09:26:05 INFO mapred.JobClient: Running job: job_201303120920_0001
13/03/12 09:26:06 INFO mapred.JobClient: map 0% reduce 0%
13/03/12 09:26:10 INFO mapred.JobClient: map 12% reduce 0%
13/03/12 09:26:13 INFO mapred.JobClient: map 25% reduce 0%
13/03/12 09:26:15 INFO mapred.JobClient: map 37% reduce 0%
13/03/12 09:26:17 INFO mapred.JobClient: map 50% reduce 0%
13/03/12 09:26:18 INFO mapred.JobClient: map 62% reduce 0%
13/03/12 09:26:19 INFO mapred.JobClient: map 62% reduce 16%
13/03/12 09:26:20 INFO mapred.JobClient: map 75% reduce 16%
13/03/12 09:26:22 INFO mapred.JobClient: map 87% reduce 16%
13/03/12 09:26:24 INFO mapred.JobClient: map 100% reduce 16%
13/03/12 09:26:28 INFO mapred.JobClient: map 100% reduce 29%
13/03/12 09:26:30 INFO mapred.JobClient: map 100% reduce 100%
13/03/12 09:26:30 INFO mapred.JobClient: Job complete: job_201303120920_0001
13/03/12 09:26:30 INFO mapred.JobClient: Counters: 29
13/03/12 09:26:30 INFO mapred.JobClient: Job Counters
13/03/12 09:26:30 INFO mapred.JobClient: Launched reduce tasks=1
13/03/12 09:26:30 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=29912
13/03/12 09:26:30 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0
13/03/12 09:26:30 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
13/03/12 09:26:30 INFO mapred.JobClient: Launched map tasks=16
13/03/12 09:26:30 INFO mapred.JobClient: Data-local map tasks=16
13/03/12 09:26:30 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=19608
13/03/12 09:26:30 INFO mapred.JobClient: File Output Format Counters
13/03/12 09:26:30 INFO mapred.JobClient: Bytes Written=15836
13/03/12 09:26:30 INFO mapred.JobClient: FileSystemCounters
13/03/12 09:26:30 INFO mapred.JobClient: FILE_BYTES_READ=23161
13/03/12 09:26:30 INFO mapred.JobClient: HDFS_BYTES_READ=29346
13/03/12 09:26:30 INFO mapred.JobClient: FILE_BYTES_WRITTEN=944157
13/03/12 09:26:30 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=15836
13/03/12 09:26:30 INFO mapred.JobClient: File Input Format Counters
13/03/12 09:26:30 INFO mapred.JobClient: Bytes Read=27400
13/03/12 09:26:30 INFO mapred.JobClient: Map-Reduce Framework
13/03/12 09:26:30 INFO mapred.JobClient: Map output materialized bytes=23251
13/03/12 09:26:30 INFO mapred.JobClient: Map input records=778
13/03/12 09:26:30 INFO mapred.JobClient: Reduce shuffle bytes=23251
13/03/12 09:26:30 INFO mapred.JobClient: Spilled Records=2220
13/03/12 09:26:30 INFO mapred.JobClient: Map output bytes=36314
13/03/12 09:26:30 INFO mapred.JobClient: Total committed heap usage (bytes)=2736914432
13/03/12 09:26:30 INFO mapred.JobClient: CPU time spent (ms)=6550
13/03/12 09:26:30 INFO mapred.JobClient: Combine input records=2615
13/03/12 09:26:30 INFO mapred.JobClient: SPLIT_RAW_BYTES=1946
13/03/12 09:26:30 INFO mapred.JobClient: Reduce input records=1110
13/03/12 09:26:30 INFO mapred.JobClient: Reduce input groups=804
13/03/12 09:26:30 INFO mapred.JobClient: Combine output records=1110
13/03/12 09:26:30 INFO mapred.JobClient: Physical memory (bytes) snapshot=2738036736
13/03/12 09:26:30 INFO mapred.JobClient: Reduce output records=804
13/03/12 09:26:30 INFO mapred.JobClient: Virtual memory (bytes) snapshot=6773346304
13/03/12 09:26:30 INFO mapred.JobClient: Map output records=2615
hadoop@derekUbun:/usr/local/hadoop$
显示输出结果
hadoop@derekUbun:/usr/local/hadoop$ hadoop dfs -cat output/*
当Hadoop结束时,可以通过stop-all.sh脚本来关闭Hadoop的守护进程
hadoop@derekUbun:/usr/local/hadoop$ bin/stop-all.sh
现在,开始Hadoop之旅,实现一些算法吧!
注记:
1. 在伪分布模式,可以通过hadoop dfs -ls 查看input里的内容
2. 在伪分布模式,可以通过hadoop dfs -rmr 查看input里的内容
3. 在伪分布模式,input和output都在hadoop dfs文件里