CA loves strings, especially loves the palindrome strings.
One day he gets a string, he wants to know how many palindromic substrings in the substring S[l,r]
Attantion, each same palindromic substring can only be counted once.
InputFirst line contains T denoting the number of testcases.
T testcases follow. For each testcase:
First line contains a string S. We ensure that it is contains only with lower case letters.
Second line contains a interger Q, denoting the number of queries.
Then Q lines follow, In each line there are two intergers l,r, denoting the substring which is queried.
1≤T≤10, 1≤length≤1000, 1≤Q≤100000, 1≤l≤r≤length
OutputFor each testcase, output the answer in Q lines.Sample Input
1
abba
2
1 2
1 3
Sample Output
2
3
题意:给定字符串S,|S|<1000;Q次询问区间不用本质的回文串数量。
思路:以每个左端点建立回文树即可。 注意判定边界,即给第0位赋值-1啥的,我之前的板子没有,害我wa了几发。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
char c[maxn]; int bb[maxn];
int N,Q,fcy[maxn][maxn];
struct PT
{
struct node{
int fail,len,son[];
}t[maxn];
int tot,last;
void init()
{
memset(t,,sizeof(t));
t[].fail=t[].fail=;
t[].len=-;
last=; tot=; bb[]=-; bb[]=-;
}
void add(int s,int n)
{
int p=last; bb[n]=s;
while(bb[n-t[p].len-]!=bb[n]) p=t[p].fail;
if(!t[p].son[s])
{
int v=++tot,k=t[p].fail;
t[v].len=t[p].len+;
while(bb[n-t[k].len-]!=bb[n]) k=t[k].fail;
t[v].fail=t[k].son[s];
t[p].son[s]=v;
}
last=t[p].son[s];
}
}T;
void solve()
{
rep(i,,N){
T.init();
rep(j,i,N) {
T.add(c[j]-'a',j-i+);
fcy[i][j]=T.tot-;
}
}
scanf("%d",&Q);
rep(i,,Q){
int L,R; scanf("%d%d",&L,&R);
printf("%d\n",fcy[L][R]);
}
}
int main()
{
int T;scanf("%d",&T);
while(T--){
memset(c,,sizeof(c));
scanf("%s",c+);
N=strlen(c+);
solve();
}
return ;
}