bzoj3306: 树(dfs序+倍增+线段树)

时间:2021-04-14 03:23:13

  比较傻逼的一道题...

  显然求子树最小值就是求出dfs序用线段树维护嘛

  换根的时候树的形态不会改变,所以我们可以根据相对于根的位置分类讨论。

  如果询问的x是根就直接输出整棵树的最小值。

  如果询问的x是根在原树上的子节点,直接输出子树的最小值。

  如果询问的x是根在原树上的祖先,那么就要输出整棵树去掉x在原树上那个包含根的子节点的子树的答案。

  至于怎么求x在原树上那个包含根的子节点,可以用倍增。

  但是我发现直接遍历x的子节点居然不会被卡,而且还跑到了第一页嘿嘿嘿

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
const int maxn=, inf=1e9;
struct poi{int too, pre;}e[maxn];
struct tjm{int sum;}tree[maxn<<];
int n, q, x, y, tot, tott, root;
int a[maxn], last[maxn], l[maxn], r[maxn], pos[maxn], d[maxn], f[maxn][];
char s[];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void add(int x, int y){e[++tot].too=y; e[tot].pre=last[x]; last[x]=tot;}
void dfs(int x)
{
l[x]=++tott; pos[tott]=x; d[x]=d[f[x][]]+;
for(int i=last[x];i;i=e[i].pre) f[e[i].too][]=x, dfs(e[i].too);
r[x]=tott;
}
inline int min(int a, int b) {return a<b?a:b;}
inline void up(int x) {tree[x].sum=min(tree[x<<].sum, tree[x<<|].sum);}
void build(int x, int l, int r)
{
if(l==r) {tree[x].sum=pos[l]?a[pos[l]]:inf; return;}
int mid=(l+r)>>;
build(x<<, l, mid); build(x<<|, mid+, r);
up(x);
}
void update(int x, int l, int r, int cx, int delta)
{
if(l==r) {tree[x].sum=delta; return;}
int mid=(l+r)>>;
if(cx<=mid) update(x<<, l, mid, cx, delta);
else update(x<<|, mid+, r, cx, delta);
up(x);
}
int query(int x, int l, int r, int cl, int cr)
{
if(cl>cr) return inf;
if(cl<=l && r<=cr) return tree[x].sum;
int mid=(l+r)>>, ans=inf;
if(cl<=mid) ans=query(x<<, l, mid, cl, cr);
if(cr>mid) ans=min(ans, query(x<<|, mid+, r, cl, cr));
return ans;
}
inline int solve(int x)
{
if(x==root) return tree[].sum;
if(l[x]>l[root] || r[x]<l[root]) return query(, , n, l[x], r[x]);
int now=root;
for(int i=;i>=;i--) if(d[f[now][i]]>x) now=f[now][i];
return min(query(, , n, , l[now]-), query(, , n, r[now]+, n));
}
int main()
{
read(n); read(q);
for(int i=;i<=n;i++)
{
read(x); read(a[i]);
if(x) add(x, i);
}
dfs(root=); build(, , n);
for(int j=;j<=;j++) for(int i=;i<=n;i++) f[i][j]=f[f[i][j-]][j-];
for(int i=;i<=q;i++)
{
scanf("%s", s+);
if(s[]=='V') read(x), read(y), update(, , n, l[x], y);
else if(s[]=='E') read(root);
else read(x), printf("%d\n", solve(x));
}
}