Q1: Find the smallest value from array:
function findMin(arr) {
let min = arr[0]; for (let i = 1; i < arr.length; i++) {
if (arr[i] < min) {
min = arr[i];
}
} return min; //
}
O(n), cannot be improved anymore, because we have to loop though the array once.
Q2: Find 2nd smallest value, naive solution:
function findSndMin(arr) {
let min = arr[0];
let min2 = arr[1]; for (let i = 0; i < arr.length; i++) {
if (arr[i] < min) {
min2 = min;
min = arr[i];
} else if (arr[i] !== min && arr[i] < min2) {
min2 = arr[i];
}
} return min2; //
}
Q3: Find nth smallest value:
1. Sorting cannot be the best solution, because it do more works, we only care Nth, means I don't care 0...n-1 is sorted or not or n +1....arr.length is sorted or not.
2. Patition: avg can achieve n + n/2 + n/4 + n/8 .... = 2n ~~ O(n), worse: O(n^2)
function findNthMin(arr, m) {
const pivot = arr[0];
let smaller = [];
let larger = []; for (let i = 1; i < arr.length; i++) {
if (arr[i] < pivot) {
smaller.push(arr[i]);
} else {
larger.push(arr[i]);
}
} smaller.push(pivot); arr = [...smaller, ...larger]; if (m > smaller.length) {
return findNthMin(larger, m - smaller.length);
} else if (m < smaller.length) {
return findNthMin(smaller, m);
} else {
return arr[m - 1];
}
} const data = [3, 1, 5, 7, 2, 8];
const res = findNthMin(data, 4);
console.log(res);
Partition vs Heap:
Why here Heap is not a good solution, because we only need Nth samllest value, we don't care 0..n-1, whether those need to be sorted or not. Heap doing more stuff then necessary.
But if the question change to "Find first K smallest value", then Heap is a good solution.
Mean while we need to be carefull that since we just need K samllest, not all N, then we don't need to add everything into the Heap.
if (h,size() >= K) {
if (h.peek() > val(i)) {
h.pop()
h.add(val(i))
}
} else {
h.add(val(i))
}