0.参考资料:
http://radarradar.javaeye.com/blog/289257
http://blog.chinaunix.net/u3/99156/showart_2157576.html
1.思路:
1.1过滤
MapReduce的第一操作就是要读取文件,不过我们经常会发现一个文本中会有一些我们不需要的字符,比如特殊字符。一般需要进行词频统计的都是单词或者是数字,所以那些非0-9, a-z, A-Z的字符基本都是垃圾字符,我们需要进行统计,这是我们可以通过一个正则表达式来进行过滤,当每次多去一行文字的时候,我们将所有非0-9, a-z, A-Z的垃圾字符都替换为空格,这样就清楚了垃圾字符。在我们最后的词频统计结果中,就不会出现这些特殊字符了。
1.2降序
定义一个用户排序比较的静态内部类,通过这个类来控制词频统计最后的排序结果。我们这里所使用的静态内部类是IntWritableDecreasingComparator。需要注意的是必须在main函数中主动声明使用这个比较器。
2.代码实例
View Code
package org.apache.hadoop.examples; import java.io.IOException; import java.util.Random; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat; import org.apache.hadoop.mapreduce.lib.map.InverseMapper; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount2 { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); private String pattern = "[^//w]"; // 正则表达式,代表不是0-9, a-z, A-Z的所有其它字符,其中还有下划线 public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString().toLowerCase(); // 全部转为小写字母 line = line.replaceAll(pattern, " "); // 将非0-9, a-z, A-Z的字符替换为空格 StringTokenizer itr = new StringTokenizer(line); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } private static class IntWritableDecreasingComparator extends IntWritable.Comparator { public int compare(WritableComparable a, WritableComparable b) { return -super.compare(a, b); } public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { return -super.compare(b1, s1, l1, b2, s2, l2); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args) .getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); } Path tempDir = new Path("wordcount-temp-" + Integer.toString( new Random().nextInt(Integer.MAX_VALUE))); //定义一个临时目录 Job job = new Job(conf, "word count"); job.setJarByClass(WordCount2.class); try{ job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, tempDir);//先将词频统计任务的输出结果写到临时目 //录中, 下一个排序任务以临时目录为输入目录。 job.setOutputFormatClass(SequenceFileOutputFormat.class); if(job.waitForCompletion(true)) { Job sortJob = new Job(conf, "sort"); sortJob.setJarByClass(WordCount2.class); FileInputFormat.addInputPath(sortJob, tempDir); sortJob.setInputFormatClass(SequenceFileInputFormat.class); /*InverseMapper由hadoop库提供,作用是实现map()之后的数据对的key和value交换*/ sortJob.setMapperClass(InverseMapper.class); /*将 Reducer 的个数限定为1, 最终输出的结果文件就是一个。*/ sortJob.setNumReduceTasks(1); FileOutputFormat.setOutputPath(sortJob, new Path(otherArgs[1])); sortJob.setOutputKeyClass(IntWritable.class); sortJob.setOutputValueClass(Text.class); /*Hadoop 默认对 IntWritable 按升序排序,而我们需要的是按降序排列。 * 因此我们实现了一个 IntWritableDecreasingComparator 类, * 并指定使用这个自定义的 Comparator 类对输出结果中的 key (词频)进行排序*/ sortJob.setSortComparatorClass(IntWritableDecreasingComparator.class); System.exit(sortJob.waitForCompletion(true) ? 0 : 1); } }finally{ FileSystem.get(conf).deleteOnExit(tempDir); } } }