Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Sample Input
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output
NO
YES
Hint
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
#include<stdio.h>
#include<string.h>
#include<stdlib.h> const int EM = ;
const int VM = ;
const int INF = ;
struct node
{
int u,v,w;
}map[EM]; int cnt,dis[VM];
int n,m,k; void addedge(int au,int av,int aw)
{
map[cnt].u = au;
map[cnt].v = av;
map[cnt].w = aw;
cnt++;
} int Bellman_ford()
{
int flag ,i;
//初始化
for( i = ; i <= n; i++)
{
dis[i] = INF;
}
dis[] =; for( i = ; i <= n; i++)
{
flag = ;
for(int j = ; j < cnt; j++)
{
if(dis[map[j].v] > dis[map[j].u]+map[j].w)
{
dis[map[j].v] = dis[map[j].u]+map[j].w;
flag = ;
}
}
if(flag== ) break;
}
if(i == n+) return ;//若第n次还可以松弛说明存在负环
else return ;
} int main()
{
int t,u,v,w,ans;
scanf("%d",&t);
while(t--)
{
cnt = ;
scanf("%d %d %d",&n,&m,&k);
while(m--)
{
scanf("%d %d %d",&u,&v,&w);
//添加双向边
addedge(u,v,w);
addedge(v,u,w);
}
while(k--)
{
scanf("%d %d %d",&u,&v,&w);
//添加单向边
addedge(u,v,-w);
}
ans = Bellman_ford();
if(ans == )
printf("YES\n");
else printf("NO\n");
}
return ;
}
//spfa判断有无负环
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<iostream>
#include<queue>
using namespace std; const int MAX = ;
const int INF = ;
int n,m,w;
int map[MAX][MAX];
queue<int>que;
int inque[MAX];
int vexcnt[MAX];
int dis[MAX]; bool spfa()
{
memset(inque,,sizeof(inque));
memset(vexcnt,,sizeof(vexcnt));
for(int i = ; i <= n; i++)
dis[i] = INF;
dis[] = ;
que.push();
inque[] = ;
vexcnt[]++;
while(!que.empty())
{
int tmp = que.front();
que.pop();
inque[tmp] = ;
for(int i = ; i <= n; i++)
{
if(dis[tmp] < INF && dis[i] > dis[tmp] + map[tmp][i])
{
dis[i] = dis[tmp] + map[tmp][i];
if(inque[i] == )
{
inque[i] = ;
vexcnt[i]++;
que.push(i);
if(vexcnt[i] >= n)
{
return false;
}
}
}
}
}
return true;
}
int main()
{
int t;
int x,y,z;
scanf("%d",&t);
while(t--)
{
while(!que.empty())que.pop();
scanf("%d %d %d",&n,&m,&w);
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
{
if(i == j) map[i][j] = ;
else map[i][j] = INF;
}
for(int i = ; i <= m; i++)
{
scanf("%d %d %d",&x,&y,&z);
if(map[x][y] > z)
{
map[x][y] = z;
map[y][x] = z;
}
}
for(int i = ; i <= w; i++)
{
scanf("%d %d %d",&x,&y,&z);
if(map[x][y] > -z)
map[x][y] = -z;
}
if(spfa())
printf("NO\n");
else printf("YES\n");
}
return ;
}