hdu 4961 数论?

时间:2021-07-24 03:19:47

http://acm.hdu.edu.cn/showproblem.php?pid=4961

给定ai数组;

构造bi, k=max(j | 0<j<i,a j%ai=0), bi=ak;

构造ci, k=min(j | i<j≤n,aj%ai=0), ci=ak;

求所有bi∗ci的和

f[x]表示能整除x的最近的下标,边构造边更新f数组,复杂度约为O(N*sqrt(A[I])) = O(10^7),可以接受,然后把所有b*c加起来即可

另外,我写的程序里面c[i]指的是上面说的b[i]...

预先处理好所有ai的因子也许能更快

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <string>
#include <cmath>
using namespace std;
#define N 100005
#define M 16000005
#define pi acos(-1.0)
#define eps 1e-9
#define Mod 1000000007
int n , m , K;
int a[N];
int f[N];
int c[N]; void work(){
int i , j , k , x , y , d;
for (i=0;i<n;++i)
scanf("%d",&a[i]);
memset(f,-1,sizeof(f));
for (i=0;i<n;++i){
c[i] = ~f[a[i]] ? a[f[a[i]]] : a[i];
x = sqrt(a[i]);
for (j=1;j<=x;++j)
if (a[i] % j == 0) f[j] = i , f[a[i]/j] = i;
}
memset(f,-1,sizeof(f));
long long ans = 0;
for (i=n-1;i>=0;--i){
ans += 1ll*c[i] * (~f[a[i]] ? a[f[a[i]]] : a[i]);
x = sqrt(a[i]);
for (j=1;j<=x;++j)
if (a[i] % j == 0) f[j] = i , f[a[i]/j] = i;
}
printf("%I64d\n",ans);
} int main(){
while (~scanf("%d",&n) && n)
work();
return 0;
}