bzoj1264 [AHOI2006]基因匹配Match 树状数组+lcs

时间:2022-10-17 03:14:59

1264: [AHOI2006]基因匹配Match

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1255  Solved: 835
[Submit][Status][Discuss]

Description

基因匹配(match)
卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球上只有4种),而更奇怪的是,组成DNA序列的每一种碱基在该序列中正好出现5次!这样如果一个DNA序列有N种不同的碱基构成,那么它的长度一定是5N。
卡卡醒来后向可可叙述了这个奇怪的梦,而可可这些日子正在研究生物信息学中的基因匹配问题,于是他决定为这个奇怪星球上的生物写一个简单的DNA匹配程序。

为了描述基因匹配的原理,我们需要先定义子序列的概念:若从一个DNA序列(字符串)s中任意抽取一些碱基(字符),将它们仍按在s中的顺序排列成一个新串u,则称u是s的一个子序列。对于两个DNA序列s1和s2,如果存在一个序列u同时成为s1和s2的子序列,则称u是s1和s2的公共子序列。
卡卡已知两个DNA序列s1和s2,求s1和s2的最大匹配就是指s1和s2最长公共子序列的长度。
[任务]
编写一个程序:
 从输入文件中读入两个等长的DNA序列;
 计算它们的最大匹配;
 向输出文件打印你得到的结果。

Input

输入文件中第一行有一个整数N,表示这个星球上某种生物使用了N种不同的碱基,以后将它们编号为1…N的整数。
以下还有两行,每行描述一个DNA序列:包含5N个1…N的整数,且每一个整数在对应的序列中正好出现5次。

Output

输出文件中只有一个整数,即两个DNA序列的最大匹配数目。

Sample Input

2
1 1 2 2 1 1 2 1 2 2
1 2 2 2 1 1 2 2 1 1

Sample Output

7

HINT

[数据约束和评分方法]
60%的测试数据中:1<=N <= 1 000
100%的测试数据中:1<=N <= 20 000

Source

给定n个数和两个长度为n*5的序列,每个数恰好出现5次,求两个序列的LCS

n<=20000,序列长度就是10W,朴素的O(n^2)一定会超时

所以我们考虑LCS的一些性质

LCS的决策+1的条件是a[i]==b[j] 于是我们记录a序列中每个数的5个位置

扫一下b[i] 对于每个b[i]找到b[i]在a中的5个位置 这5个位置的每个f[pos]值都可以被b[i]更新 于是找到f[1]到f[pos-1]的最大值+1 更新f[pos]即可

这个用树状数组维护 时间复杂度O(nlogn)

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdio> #define M 200007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if (ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,ans;
int a[M*],b[M*],c[M*],f[M*],pos[M][]; void Update(int x,int y)
{
for(;x<=n*;x+=x&-x)
c[x]=max(c[x],y);
}
int Get_Ans(int x)
{
int re=;
for(;x;x-=x&-x)
re=max(re,c[x]);
return re;
}
int main()
{
n=read();
for(int i=;i<=n*;i++)
{
a[i]=read();
pos[a[i]][++pos[a[i]][]]=i;
}
for(int i=;i<=n*;i++)b[i]=read();
for(int i=;i<=n*;i++)
for(int j=;j;j--)
{
int k=pos[b[i]][j];
f[k]=max(f[k],Get_Ans(k-)+);
Update(k,f[k]);
ans=max(ans,f[k]);
}
printf("%d\n",ans);
}