Python中的矩阵操作

时间:2021-01-07 02:55:34

Numpy

通过观察Python的自有数据类型,我们可以发现Python原生并不提供多维数组的操作,那么为了处理矩阵,就需要使用第三方提供的相关的包。

NumPy 是一个非常优秀的提供矩阵操作的包。NumPy的主要目标,就是提供多维数组,从而实现矩阵操作。

NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes.

基本操作

#######################################
# 创建矩阵
#######################################
from numpy import array as matrix, arange # 创建矩阵
a = arange(15).reshape(3,5)
a # Out[10]:
# array([[0., 0., 0., 0., 0.],
# [0., 0., 0., 0., 0.],
# [0., 0., 0., 0., 0.]]) b = matrix([2,2])
b # Out[33]: array([2, 2]) c = matrix([[1,2,3,4,5,6],[7,8,9,10,11,12]], dtype=int)
c # Out[40]:
# array([[ 1, 2, 3, 4, 5, 6],
# [ 7, 8, 9, 10, 11, 12]])
#######################################
# 创建特殊矩阵
#######################################
from numpy import zeros, ones,empty z = zeros((3,4))
z # Out[43]:
# array([[0., 0., 0., 0.],
# [0., 0., 0., 0.],
# [0., 0., 0., 0.]]) o = ones((3,4))
o # Out[46]:
# array([[1., 1., 1., 1.],
# [1., 1., 1., 1.],
# [1., 1., 1., 1.]]) e = empty((3,4))
e # Out[47]:
# array([[0., 0., 0., 0.],
# [0., 0., 0., 0.],
# [0., 0., 0., 0.]])
#######################################
# 矩阵数学运算
#######################################
from numpy import array as matrix, arange a = arange(9).reshape(3,3)
a # Out[10]:
# array([[0, 1, 2],
# [3, 4, 5],
# [6, 7, 8]]) b = arange(3)
b # Out[14]: array([0, 1, 2]) a + b # Out[12]:
# array([[ 0, 2, 4],
# [ 3, 5, 7],
# [ 6, 8, 10]]) a - b # array([[0, 0, 0],
# [3, 3, 3],
# [6, 6, 6]]) a * b # Out[11]:
# array([[ 0, 1, 4],
# [ 0, 4, 10],
# [ 0, 7, 16]]) a < 5 # Out[12]:
# array([[ True, True, True],
# [ True, True, False],
# [False, False, False]]) a ** 2 # Out[13]:
# array([[ 0, 1, 4],
# [ 9, 16, 25],
# [36, 49, 64]], dtype=int32) a += 3
a # Out[17]:
# array([[ 3, 4, 5],
# [ 6, 7, 8],
# [ 9, 10, 11]])
#######################################
# 矩阵内置操作
#######################################
from numpy import array as matrix, arange a = arange(9).reshape(3,3)
a # Out[10]:
# array([[0, 1, 2],
# [3, 4, 5],
# [6, 7, 8]]) a.max() # Out[23]: 8 a.min() # Out[24]: 0 a.sum() # Out[25]: 36
#######################################
# 矩阵索引、拆分、遍历
#######################################
from numpy import array as matrix, arange a = arange(25).reshape(5,5)
a # Out[9]:
# array([[ 0, 1, 2, 3, 4],
# [ 5, 6, 7, 8, 9],
# [10, 11, 12, 13, 14],
# [15, 16, 17, 18, 19],
# [20, 21, 22, 23, 24]]) a[2,3] # 取第3行第4列的元素 # Out[3]: 13 a[0:3,3] # 取第1到3行第4列的元素 # Out[4]: array([ 3, 8, 13]) a[:,2] # 取所有第二列元素 # Out[7]: array([ 2, 7, 12, 17, 22]) a[0:3,:] # 取第1到3行的所有列 # Out[8]:
# array([[ 0, 1, 2, 3, 4],
# [ 5, 6, 7, 8, 9],
# [10, 11, 12, 13, 14]]) a[-1] # 取最后一行 # Out[10]: array([20, 21, 22, 23, 24]) for row in a: # 逐行迭代
print(row) # [0 1 2 3 4]
# [5 6 7 8 9]
# [10 11 12 13 14]
# [15 16 17 18 19]
# [20 21 22 23 24] for element in a.flat: # 逐元素迭代,从左到右,从上到下
print(element) # 0
# 1
# 2
# 3
# ...
#######################################
# 改变矩阵
#######################################
from numpy import array as matrix, arange b = arange(20).reshape(5,4) b # Out[18]:
# array([[ 0, 1, 2, 3],
# [ 4, 5, 6, 7],
# [ 8, 9, 10, 11],
# [12, 13, 14, 15],
# [16, 17, 18, 19]]) b.ravel() # Out[16]:
# array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
# 17, 18, 19]) b.reshape(4,5) # Out[17]:
# array([[ 0, 1, 2, 3, 4],
# [ 5, 6, 7, 8, 9],
# [10, 11, 12, 13, 14],
# [15, 16, 17, 18, 19]]) b.T # reshape 方法不改变原矩阵的值,所以需要使用 .T 来获取改变后的值 # Out[19]:
# array([[ 0, 4, 8, 12, 16],
# [ 1, 5, 9, 13, 17],
# [ 2, 6, 10, 14, 18],
# [ 3, 7, 11, 15, 19]])
#######################################
# 合并矩阵
#######################################
from numpy import array as matrix,newaxis
import numpy as np d1 = np.floor(10*np.random.random((2,2)))
d2 = np.floor(10*np.random.random((2,2))) d1 # Out[7]:
# array([[1., 0.],
# [9., 7.]]) d2 # Out[9]:
# array([[0., 0.],
# [8., 9.]]) np.vstack((d1,d2)) # 按列合并 # Out[10]:
# array([[1., 0.],
# [9., 7.],
# [0., 0.],
# [8., 9.]]) np.hstack((d1,d2)) # 按行合并 # Out[11]:
# array([[1., 0., 0., 0.],
# [9., 7., 8., 9.]]) np.column_stack((d1,d2)) # 按列合并 # Out[13]:
# array([[1., 0., 0., 0.],
# [9., 7., 8., 9.]]) c1 = np.array([11,12])
c2 = np.array([21,22]) np.column_stack((c1,c2)) # Out[14]:
# array([[11, 21],
# [12, 22]]) c1[:,newaxis] # 添加一个“空”列 # Out[18]:
# array([[11],
# [12]]) np.hstack((c1,c2)) # Out[27]: array([11, 12, 21, 22]) np.hstack((c1[:,newaxis],c2[:,newaxis])) # Out[28]:
# array([[11, 21],
# [12, 22]])

参考

  1. NumPy官方文档