ICCV2013 录用论文(目标跟踪相关部分)(转)

时间:2021-04-17 02:30:49

单目标(表观模型):

1. Seunghoon HongBohyung
Han
. Orderless Tracking
through Model-Averaged Density Estimation
. (Offline tracking?和一般的object tracking还是不一样的。 CVPR12上也有篇Orderless
Tracking
, 不过是online tracking)

2. Zhibin Hong, Xue MeiDacheng
Tao
Tracking via Robust Multi-Task Multi-View Joint Sparse Representation. (稀疏表示)

3. Naiyan Wang.Online
Robust Non-negative Dictionary Learning for Visual Tracking
.

4. Jin Gao. Discriminant Tracking Using Tensor Representation with Semi-supervise d Improvement. (Tensor,中科院的强项来了)

5. Kwang Yi. Initialization-Insensitive Visual Tracking Through Voting with Salient Local Features.

6. Junliang Xing. Robust Object Tracking with Online Multi-lifespan Dictionary Learning.

7. Dapeng Che. Constructing Adaptive Complex Cells for Robust Visual Tracking.

8. Qinxun Bai.Randomized
Ensemble Tracking
. (草草看了一下,作者在线学习了弱分类器的权重系数,目标用了分块提取的直方图特征。)

9. Stefan Duffner. PixelTrack: a fast adaptive algorithm for tracking non-rigid objects.

10. Martin Schiegg. Conservation Tracking.

多目标(关联跟踪):

1. Caglayan Dicle. The Way They Move: Tracking Multiple Targets with Similar Appearance.

2. Baoyuan WuJi
Qiang
, and et al. Simultaneous Clustering and Tracklet Linking for Multi-Face Tracking in Videos.

3. Siyu TangLearning
People Detectors for Tracking in Crowded Scenes
. (Tracking failure, occlusion pattern)

4. Chetan AroraHigher Order Matching for Consistent Multiple Target Tracking.

5. Aleksandr Segal, Ian ReidLatent
Data Association: Bayesian Model Selection for Multitarget Tracking
.

跟踪算法评价:

1. YU PANG, Haibin Ling.Finding
the Best from the Second Bests -- Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms
. (这是一篇很有趣的文章,作者认为如果tracking paper做性能比较时一般都会有bias存在,因为调参、选视频和对比算法中不可避免加入作者主观的因素使proposed tracker在competition中胜出。然而,作者注意到了一点,除去那个proposed
tracker,其他trackers(也就是题目中的second bests)的比较结果的可信度应该比较大,所以可以搜集跟踪论文中除去proposed tracker的所有结果,从这些数据中李云排序算法得到各种跟踪算法的性能排名。最后结果Struck还是排名第一。)

从收录论文来看可见几种趋势,在RGB-D图像上的跟踪开始增多(上文没有列出),扫了一眼收录论文至少有3篇。基于Dictionary Learning的有2篇录用,从子空间(PCA)到sparse-coding-based tracking(L1)再到到Dictionary Learning-based tracking这个过程也相当的清晰了。至于多目标跟踪,需要多多学习了。

*以上对单/多目标的分类仅从论文题目上判断。

其他感兴趣的工作(陆续发现中):

1. Michael GygliHelmut
Grabner
.The Interestingness of Images.

2. Hamed Kiani galoogahi,Terence
Sim
,Simon Lucey.Multi-Channel
Correlation Filters
. (Minimum Output Sum of Squared Error Filter对于多通道特征的扩展)

3. Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, Antonio Torralba. HOGgles: Visualizing
Object Detection Features
. (from MIT, demo可以把图像的HoG特征可视化,cool!)

4. Rui Zhao, Wanli Ouyang, Xiaogang
Wang
Person Re-identification by Salience Matching. (Re-Id, from CUHK)

5. Weilin Huang,  Zhe Lin,Jianchao
Yang
,Jue Wang.Text
Localization in Natural Images using Stroke Feature Transform and Text Covariance Descriptors
. (byAdobe<人家叫阿逗比,不是阿逗巴>, 笔画变换+Cov描述子)

6. Javier Marin, David Vazquez, Jaume Amores, Antonio Lopez, Bastian Leibe.Random
Forests of Local Experts for Pedestrian Detection
. (随机森林, 行人检测)

7. Taegyu Lim, Seunghoon Hong, Bohyung Han, Joon Hee Han. Simultaneous Segmentation and Pose Tracking in Moving Camera.

8. Piotr Dollar, Larry Zitnick. Structured
Forests for Fast Edge Detection
. (Random Forest用于边缘检测,新颖,快评见此

9. Danhang TangT-K.
Kim
Real-time Articulated Hand Pose Estimation using Semi-supervised
Transductive Regression Forests
.

10. X. Zhu, C. C. Loy, and S. Gong. Video
Synopsis by Heterogeneous Multi-Source Correlation
. (视频摘要, Clustering Forest 应用)

11. Samuel Schulter, Christian Leistner, Paul Wohlhart and et al. Alternating
Regression Forests for Object Detection and Pose Estimation
. (TU Graz)