题目大意:给一个n个点的无向连通图,找出删除某个点后的连通块个数。
题目分析:统计一下每个节点属于几个双连通分量,若是割点,得到的便是答案,否则答案为1。
代码如下:
# include<iostream>
# include<cstdio>
# include<stack>
# include<vector>
# include<cstring>
# include<algorithm>
using namespace std;
# define REP(i,s,n) for(int i=s;i<n;++i)
# define CL(a,b) memset(a,b,sizeof(a)); const int N=10005;
struct Edge
{
int u,v;
Edge(int _u,int _v):u(_u),v(_v){}
bool operator < (const Edge &a) const {
if(v==a.v) return u<a.u;
return v>a.v;
}
};
stack<Edge>S;
vector<Edge>ans;
vector<int>G[N],bcc[N];
int n,m,dfs_cnt,bcc_cnt,bccno[N],pre[N],low[N],cnt[N],iscut[N]; void dfs(int u,int fa)
{
low[u]=pre[u]=++dfs_cnt;
int child=0;
REP(i,0,G[u].size()){
int v=G[u][i];
if(pre[v]==0){
++child;
S.push(Edge(u,v));
dfs(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>=pre[u]){
iscut[u]=1;
bcc[++bcc_cnt].clear();
while(1){
Edge x=S.top();
S.pop();
if(bccno[x.u]!=bcc_cnt){
bcc[bcc_cnt].push_back(x.u);
bccno[x.u]=bcc_cnt;
}if(bccno[x.v]!=bcc_cnt){
bcc[bcc_cnt].push_back(x.v);
bccno[x.v]=bcc_cnt;
}
if(x.u==u&&x.v==v) break;
}
}
}else if(pre[v]<pre[u]&&v!=fa){
S.push(Edge(u,v));
low[u]=min(low[u],pre[v]);
}
}
if(fa<0&&child==1) iscut[u]=0;
} void findBcc()
{
CL(bccno,0);
CL(iscut,0);
CL(pre,0);
dfs_cnt=bcc_cnt=0;
REP(i,0,n) if(!pre[i])
dfs(i,-1);
} int main()
{
int a,b;
while(scanf("%d%d",&n,&m)&&(n+m))
{
REP(i,0,n) G[i].clear();
while(scanf("%d%d",&a,&b))
{
if(a==-1&&b==-1)
break;
G[a].push_back(b);
G[b].push_back(a);
}
findBcc();
ans.clear();
CL(cnt,0);
REP(i,1,bcc_cnt+1) REP(j,0,bcc[i].size()) ++cnt[bcc[i][j]];
REP(i,0,n){
if(iscut[i])
ans.push_back(Edge(i,cnt[i]));
else
ans.push_back(Edge(i,1));
}
sort(ans.begin(),ans.end());
REP(i,0,m) printf("%d %d\n",ans[i].u,ans[i].v);
printf("\n");
}
return 0;
}