0. 前言
这一篇我们将介绍一下.net core 的加密和解密。在Web应用程序中,用户的密码会使用MD5值作为密码数据存储起来。而在其他的情况下,也会使用加密和解密的功能。
常见的加密算法分为对称加密和非对称加密。所谓的对称加密是指加密密钥和解密密钥是同一个,非对称加密是值加密密钥和解密迷药不同。而我们常应用在保存用户登录密码这个过程中的MD5本质上并不是加密算法,而是一种信息摘要算法。不过MD5尽量保证了每个字符串最后计算出来的值都不一样,所以在密码保存中常用MD5做为保密值。
1. 常见对称加密算法
对称加密算法,简单的说就是加密和解密使用相同的密钥进行运算。对于大多数加密算法,解密和加密是一个互逆的运算。对称加密算法的安全性取决于密钥的长度,密钥越长越安全。当然,不建议使用过长的密钥。
那么,我们来看看常见的对称加密算法有哪些吧,以及C#该如何实现。
1.1 DES 和 DESede 算法
DES算法和DESede算法(又称三重DES算法) 统称DES系列算法。DES全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法。而DESede就是针对同一块数据做三次DES加密。这里就不对原理做过多的介绍了,来看看.net core里如何实现DES加/解密吧。
在Utils项目里,创建目录Security
:
在Security目录下,创建DESHelper类:
1
2
3
4
5
6
7
|
namespace Utils.Security
{
public class DesHelper
{
}
}
|
加密解密实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
namespace Utils.Security
{
public static class DesHelper
{
static DesHelper()
{
DesHandler = DES.Create( "DES" );
DesHandler.Key = Convert.FromBase64String( "L1yzjGB2sI4=" );
DesHandler.IV = Convert.FromBase64String( "uEcGI4JSAuY=" );
}
private static DES DesHandler { get ; }
/// <summary>
/// 加密字符
/// </summary>
/// <param name="source"></param>
/// <returns></returns>
public static string Encrypt( string source)
{
try
{
using (var memStream = new MemoryStream())
using (var cryptStream = new CryptoStream(memStream, DesHandler.CreateEncryptor(DesHandler.Key, DesHandler.IV),
CryptoStreamMode.Write))
{
var bytes = Encoding.UTF8.GetBytes(source);
cryptStream.Write(bytes, 0, bytes.Length);
cryptStream.FlushFinalBlock();
return Convert.ToBase64String(memStream.ToArray());
}
}
catch (Exception e)
{
Console.WriteLine(e);
return null ;
}
}
/// <summary>
/// 解密
/// </summary>
/// <param name="source"></param>
/// <returns></returns>
public static string Decrypt( string source)
{
try
{
using (var mStream = new MemoryStream(Convert.FromBase64String(source)))
using (var cryptoStream =
new CryptoStream(mStream, DesHandler.CreateDecryptor(DesHandler.Key, DesHandler.IV), CryptoStreamMode.Read))
using (var reader = new StreamReader(cryptoStream))
{
return reader.ReadToEnd();
}
}
catch (Exception e)
{
Console.WriteLine(e);
return null ;
}
}
}
}
|
每次调用DesHandler = DES.Create("DES");
都会重新获得一个DES算法实现实例,这样每次获取的实例中Key、IV这两个属性的值也会发生变化。如果直接使用会出现这次加密的数据下次就没法解密了,为了减少这种情况,所以代码处手动赋值了Key、IV这两个属性。
1.2 AES 加密算法
AES算法(Advanced Encryption Standard)也就是高级数据加密标准算法,是为了解决DES算法中的存在的漏洞而提出的算法标准。现行的AES算法核心是Rijndael算法。当然了,这个不用太过于关心。我们直接看看是如何实现吧:
同样,在Security目录创建一个AesHelper类:
1
2
3
4
5
6
7
|
namespace Utils.Security
{
public static class AesHelper
{
}
}
|
具体的加解密实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
using System;
using System.IO;
using System.Security.Cryptography;
namespace Utils.Security
{
public static class AesHelper
{
static AesHelper()
{
AesHandler = Aes.Create();
AesHandler.Key = Convert.FromBase64String( "lB2BxrJdI4UUjK3KEZyQ0obuSgavB1SYJuAFq9oVw0Y=" );
AesHandler.IV = Convert.FromBase64String( "6lra6ceX26Fazwj1R4PCOg==" );
}
private static Aes AesHandler { get ; }
public static string Encrypt( string source)
{
using (var mem = new MemoryStream())
using (var stream = new CryptoStream(mem, AesHandler.CreateEncryptor(AesHandler.Key, AesHandler.IV),
CryptoStreamMode.Write))
{
using (var writer = new StreamWriter(stream))
{
writer.Write(source);
}
return Convert.ToBase64String(mem.ToArray());
}
}
public static string Decrypt( string source)
{
var data = Convert.FromBase64String(source);
using (var mem = new MemoryStream(data))
using (var crypto = new CryptoStream(mem, AesHandler.CreateDecryptor(AesHandler.Key, AesHandler.IV),
CryptoStreamMode.Read))
using (var reader = new StreamReader(crypto))
{
return reader.ReadToEnd();
}
}
}
}
|
2. 常见非对称加密算法
非对称加密算法,指的是加密密钥和解密密钥并不相同。非对称加密算法的秘钥通常成对出现,分为公开密钥和私有密钥。公开密钥可以以公开的形式发给数据交互方,而不会产生泄密的风险。因为非对称加密算法,无法通过公开密钥推算私有密钥,反之亦然。
通常,非对称加密算法是用公钥进行加密,使用私钥进行解密。
2.1 RSA算法
RSA算法是标准的非对称加密算法,名字来源是三位发明者的姓氏首字母。RSA公开密钥密码*是一种使用不同的加密密钥与解密密钥,“由已知加密密钥推导出解密密钥在计算上是不可行的”密码* 。其安全性取决于密钥的长度,1024位的密钥几乎不可能被破解。
同样,在Utils.Security下创建RSAHelper类:
1
2
3
4
5
6
7
|
namespace Utils.Security
{
public static class RsaHelper
{
}
}
|
具体实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
using System;
using System.Security.Cryptography;
namespace Utils.Security
{
public static class RsaHelper
{
public static RSAParameters PublicKey { get ; private set ; }
public static RSAParameters PrivateKey { get ; private set ; }
static RsaHelper()
{
}
public static void InitWindows()
{
var parameters = new CspParameters()
{
KeyContainerName = "RSAHELPER" // 默认的RSA保存密钥的容器名称
};
var handle = new RSACryptoServiceProvider(parameters);
PublicKey = handle.ExportParameters( false );
PrivateKey = handle.ExportParameters( true );
}
public static void ExportKeyPair( string publicKeyXmlString, string privateKeyXmlString)
{
var handle = new RSACryptoServiceProvider();
handle.FromXmlString(privateKeyXmlString);
PrivateKey = handle.ExportParameters( true );
handle.FromXmlString(publicKeyXmlString);
PublicKey = handle.ExportParameters( false );
}
public static byte [] Encrypt( byte [] dataToEncrypt)
{
try
{
byte [] encryptedData;
using (RSACryptoServiceProvider RSA = new RSACryptoServiceProvider())
{
RSA.ImportParameters(PublicKey);
encryptedData = RSA.Encrypt(dataToEncrypt, true );
}
return encryptedData;
}
catch (CryptographicException e)
{
Console.WriteLine(e.Message);
return null ;
}
}
public static byte [] Decrypt( byte [] dataToDecrypt)
{
try
{
byte [] decryptedData;
using (var rsa = new RSACryptoServiceProvider())
{
rsa.ImportParameters(PrivateKey);
decryptedData = rsa.Decrypt(dataToDecrypt, true );
}
return decryptedData;
}
catch (CryptographicException e)
{
Console.WriteLine(e.ToString());
return null ;
}
}
}
}
|
因为RSA的特殊性,需要预先设置好公钥和私钥。C# 支持多种方式导入密钥,这里就不做过多介绍了。
3. 信息摘要算法
这种算法严格意义上并不是加密算法,因为它完全不可逆。也就是说,一旦进行使用该类型算法加密后,无法解密还原出数据。当然了,也正是因为这种特性常常被用来做密码的保存。因为这样可以避免某些人拿到数据库与代码后,可以简单反推出用户的密码。
3.1 MD5算法
最常用的信息摘要算法就是MD5 加密算法,MD5信息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。
原理不解释,我们看下如何实现,照例现在Security下创建MD5Helper:
1
2
3
4
5
6
7
|
namespace Utils.Security
{
public static class Md5Helper
{
}
}
|
具体实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
using System.Security.Cryptography;
using System.Text;
namespace Utils.Security
{
public static class Md5Helper
{
private static MD5 Hanlder { get ; } = new MD5CryptoServiceProvider();
public static string GetMd5Str( string source)
{
var data = Encoding.UTF8.GetBytes(source);
var security = Hanlder.ComputeHash(data);
var sb = new StringBuilder();
foreach (var b in security)
{
sb.Append(b.ToString( "X2" ));
}
return sb.ToString();
}
}
}
|
4 总结
这一篇简单介绍了四种常用的加密算法的实现,当然最常用的就是 MD5,因为这个是大多数系统用来做密码保存的加密算法。
以上就是asp.net core常见的4种数据加密算法的详细内容,更多关于asp.net core 数据加密算法的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/c7jie/p/13179597.html