Python入门-内置函数二

时间:2022-04-02 01:16:13

  看到标题你也能猜到今天要说大概内容是什么了,没错,昨天没有说完的部分再给大家说说(有一些重合的部分),内置函数的内容比较多,并且工作中经常用到的却不太多,很多都是不太常用的,所以我就着重说一些比较常用的,今天再说两个函数:匿名函数和递归函数.还有就是二分法查找

  首先来说一下匿名函数,因为几个比较重要的内置函数都要和匿名函数搭配来用

一.匿名函数

  为了解决一些简单的需求而设计的一句话函数

# 计算n的n次方
def func(n):
return n**n
print(func(10)) f = lambda n: n**n
print(f(10))

  lambda表示的是匿名函数,不需要用def来声明,一句话就可以声明出一个函数

  语法:

    函数名 = lambda 参数: 返回值

  注意:

    1.函数的参数可以有多个,多个参数之间用逗号隔开;

    2.匿名函数不管多复杂,只能写一行,且逻辑结束后直接返回数据;

    3.返回值和正常的函数一样,可以是任意数据类型

  匿名函数并不是说一定没有名字,这里面的变量就是一个函数名,说他是匿名函数原因是我们通过__name__查看的时候是没有名字的,统一都叫lambda,在调用的时候没有什么特别之处,像正常的函数调用即可.

二.sorted()

  排序函数

  语法:

    sorted(iterable,key = None,reverse = False)

    iterable:可迭代对象

    key:排序规则(排序函数),在sorted内部会将可迭代对象中的每一个元素传递给这个函数的参数,根据函数运算的结果进行排序

    reverse:是否是倒序,True:倒序,False:正序

lst = [1,5,3,4,6]
lst2 = sorted(lst)
print(lst) # 原列表不会改变
print(lst2) # 返回的新列表是经过排序的 dic = {1:'A', 3:'C', 2:'B'}
print(sorted(dic)) # 如果是字典. 则返回排序过后的key

  和函数组合使用

# 根据字符串长度进行排序
lst = ["麻花藤", "冈本次郎", "*情报局", "狐仙"] # 计算字符串长度
def func(s):
return len(s) print(sorted(lst, key=func))

  和lambda组合使用

# 根据字符串长度进行排序
lst = ["麻花藤", "冈本次郎", "*情报局", "狐仙"] # 计算字符串长度
def func(s):
return len(s) print(sorted(lst, key=lambda s: len(s))) lst = [{"id":1, "name":'alex', "age":18},
{"id":2, "name":'wusir', "age":16},
{"id":3, "name":'taibai', "age":17}]
# 按照年龄对学生信息进行排序
print(sorted(lst, key=lambda e: e['age']))

三.filter()

  筛选函数

  语法:

    filter(function,iterable)

    function:用来筛选的函数,在filter中会自动的把iterable中的元素传递给function,然后根据function返回的True或者False来判断是否保留此项数据

    iterable:可迭代对象

lst = [1,2,3,4,5,6,7]
ll = filter(lambda x: x%2==0, lst) # 筛选所有的偶数
print(ll)
print(list(ll)) lst = [{"id":1, "name":'alex', "age":18},
{"id":2, "name":'wusir', "age":16},
{"id":3, "name":'taibai', "age":17}]
fl = filter(lambda e: e['age'] > 16, lst) # 筛选年龄大于16的数据
print(list(fl))

四.map()

  映射函数

  语法:

    map(function,iterable)可以对可迭代对象中的每一个元素进行映射,分别去执行function

  计算列表中每个元素的平方,返回新列表

def func(e):
return e*e
mp = map(func, [1, 2, 3, 4, 5])
print(mp)
print(list(mp))

  改写成lambda

print(list(map(lambda x: x * x, [1, 2, 3, 4, 5])))

  计算两个列表中相同位置的数据的和

# 计算两个列表相同位置的数据的和
lst1 = [1, 2, 3, 4, 5]
lst2 = [2, 4, 6, 8, 10]
print(list(map(lambda x, y: x+y, lst1, lst2)))

五.递归

  在函数中调用函数本身就是递归

def func():
print("我是谁")
func()
func()

  在python中递归的深度最大到998

def foo(n):
print(n)
n += 1
foo(n)
foo(1)

  递归的应用:

    我们可以使用递归来遍历各种树形结构,比如我们的文件夹系统,可以使用递归来遍历该文件夹的所有文件

import os
def read(filepath, n):
files = os.listdir(filepath) # 获取到当前文件夹中的所有文件
for fi in files: # 遍历文件夹中的文件, 这里获取的只是本层文件名
fi_d = os.path.join(filepath,fi) # 加入文件夹 获取到文件夹+文件
if os.path.isdir(fi_d): # 如果该路径下的文件是文件夹
print("\t"*n, fi)
read(fi_d, n+1) # 继续进行相同的操作
else:
print("\t"*n, fi) # 递归出口. 最终在这里隐含着return #递归遍历目录下所有文件
read('d:/', 0)

六.二分查找

  二分查找,每次能够排除掉一半的数据,查找的效率非常高,但是局限性比较大,必须是有序序列才可以使用二分查找.

  要求:查找的序列必须是有序序列

# 判断n是否在lst中出现. 如果出现请返回n所在的位置
# 二分查找---非递归算法
lst = [22, 33, 44, 55, 66, 77, 88, 99, 101, 238, 345, 456, 567, 678, 789]
n = 567
left = 0
right = len(lst) - 1
count = 1
while left <= right:
middle = (left + right) // 2
if n < lst[middle]:
right = middle - 1
elif n > lst[middle]:
left = middle + 1
else:
print(count)
print(middle)
break
count = count + 1
else:
print("不存在") # 普通递归版本二分法
def binary_search(n, left, right):
if left <= right:
middle = (left+right) // 2
if n < lst[middle]:
right = middle - 1
elif n > lst[middle]:
left = middle + 1
else:
return middle
return binary_search(n, left, right) # 这个return必须要加.否则接收到的永是None.
else:
return -1 print(binary_search(567, 0, len(lst)-1)) # 另类二分法, 很难计算位置.
def binary_search(ls, target):
left = 0
right = len(ls) - 1
if left > right:
print("不在这里")
middle = (left + right) // 2
if target < ls[middle]:
return binary_search(ls[:middle], target)
elif target > ls[middle]:
return binary_search(ls[middle+1:], target)
else:
print("在这里") binary_search(lst, 567)