1、
指令写法:MOV
功能描述:将源操作数source的值复制到target中去,source值不变
注意事项:1)target不能是CS(代码段寄存器),我的理解是代码段不可写,只可读,所以相应这地方也不能对CS执行复制操作。2)target和source不能同时为内存数、段寄存器(CS\DS\ES\SS\FS\GS)3)不能将立即数传送给段寄存器4)target和source必须类型匹配,比如,要么都是字节,要么都是字或者都是双字等。4)由于立即数没有明确的类型,所以将立即数传送到target时,系统会自动将立即数零扩展到与target数的位数相同,再进行传送。有时,需要用BYTE PTR 、WORD PTR、 DWORD PTR明确指出立即数的位数
写法示例:MOV
2、
指令写法:XCHG object1,object2
功能描述:交换object1与object2的值
注意事项:1)不能直接交换两个内存数的值 2)类型必须匹配3)两个操作数任何一个都不能是段寄存器【看来段寄存器的写入的限制非常的严格,MOV指令也不能对段寄存器进行写入】,4)必须是通用寄存器(ax、bx、cx、dx、si、di)或内存数
写法示例:XCHG
3、
指令写法:LEZ reg16,mem
功能描述:将有效地址MEM的值装入到16位的通用寄存器中。
写法示例:假定bx=5678H,EAX=1,EDX=2
注意,这里装入的是有效地址,并不是实际的内存中的数值,如果要想取内存中该地址对应的数值,还需要加上段地址才行,而段地址有可能保存在DS中,也有可能保存在SS或者CS中哦:>不知道我的理解可正确。。。。
4、
这几个指令,名称不同,作用差不多。
写法:LDS reg16,mem32
功能描述:reg16等于mem32的低字,而DS对应于mem32的高字(当为LES时,这里就是ES对应于mem32的高字)
用来给一个段寄存器和一个16位通用寄存器同时复制。
注意事项:第一个操作数必须是16位通用寄存器
在接着往下说之前,先熟悉下堆栈的概念。堆栈,位于内存的堆栈段中,是内存的一部分,具有“先进后出”的特点,堆栈只有一个入口,即当前栈顶,当堆栈为空时,栈顶和栈底指向同一内存地址,在WINDOWS中,可以把堆栈理解成一个倒着的啤酒瓶,上面的地址大,下面的地址小,当从瓶口往啤酒瓶塞啤酒时(进栈),栈顶就会往瓶口下移动,也就是往低地址方向移动,同理,出栈时,正好相反,把啤酒给倒出来,栈顶向高地址方向移动。这就是所谓的堆栈 ,哼哼,很Easy吧。
在汇编语言中,堆栈操作的最小单位是字,也就是说,只能以字或双字为单位,同时,SS:SP指向栈顶(SS为堆栈段寄存器,SP为堆栈指针,二者一相加,就构成了堆栈栈顶的内存地址)。
5、
写法:PUSH reg16(32)/seg/mem16(32)/imm
功能描述:将通用寄存器/段寄存器/内存数/立即数的值压入栈中,即:
SP=SP-2 SS:[SP]=16位数值(当将32位数值压入栈中时,SP=SP-4,SS:[SP]=32为数值)
6、
写法:POP reg16(32)/seg/mem16(32)【不能出栈到CS中】
功能描述:将堆栈口的16(32)位数据推出到通用寄存器/段寄存器/内存中,即:
寄存器/段寄存器/内存= SS:[SP]
7、
作用:将所有16/32位通用寄存器进栈/出栈
如:PUSHA ;将AX、CX、DX、BX、原SP、BP、SI、DI依次进栈。POPA出栈顺序正好相反,但要注意的是,弹出到SP的值被丢弃,SP通过增加16位来恢复(当然嘛,不然栈顶地址就被修改了,就会出息不对齐的情况,就有可能乱套了)
POPAD PUSHAD一样,只不过是32位的罢了。
8、
功能描述:标志寄存器FLAGS(EFLAGS)进栈或出栈
如:PUSHF ;FLAGS进栈
总结下,POP 和PUSH通常可以用来交换两个寄存器的值,也可以用来保护寄存器的值,如下:
交换ax与cx的值:push ax;push cx;pop ax; pop cx;
保护寄存器:push ax;push cx;….中间有很多执行的代码…pop cx;pop ax;
9、LAHF\SAHF(标志寄存器传送指令)
写法:lahf;
作用:AH=FLAGS的低8位
写法:sahf;
作用:FLAGS的低8位=AH
10、符号扩展和零扩展指令
CBW;AL符号扩展为AX
CWD;AX符号扩展为32位数DX:AX
CWDE;AX符号扩展为EAX;
CDQ:EAX符号扩展为64位数EDX:EAX
MOVSX(符号扩展指令的一般形式)
写法:MOVSX reg16\32,reg8\reg16\mem8\mem16
作用:用来将8位符号扩展到16位,或者16位符号扩展到32位
MOVZX(零扩展指令)
写法:MOVZX reg16\32,reg8\reg16\mem8\mem16
零扩展,就是高位补0进行扩展。通常用在将数据复制到一个不同的寄存器中,如AL零扩展为EBX。相同寄存器的零扩展,可以使用MOV 高位, 0来实现。
11、BSWAP(字节交换)
写法:bswap reg32
作用:将reg32的第0与第3个字节,第1与第2个字节进行交换。
示例:设EAX=12345678h
执行bswap eax;后,eax=78563412H
12、XLAT(换码)
写法:XLAT;
作用:AL=DS:[bx+AL]
将DS:BX所指内存中的由AL指定位移处的一个字节赋值给AL。(貌似这是一个方便偷懒的指令哦。。),原来它的主要用途是查表。注意可以给它提供操作数,用来指定使用哪个段地址,如:
XLAT ES:table;使用ES来作为段地址,table不起作用。
XLAT table ;使用table所在段对应的段寄存器作为段地址。
------------------------------------------------ 数据传送指令结束 -------------------------------------------------------
----------------------------------算术指令开始-----------------------------------------------
13、ADD(加法)
写法:ADD reg/mem reg/mem/imm
作用:将后面的操作数加到前面的操作数中
注意:两个操作数必须类型匹配,并且不能同时是内存操作数
ADC (带进位加法)
写法:ADC reg/mem, reg/mem/imm ;
作用:dest=dest+src+cf
当CF=0时 ADD与ADC的作用是相同的。
示例:实现64位数EDX:EAX与ECX:EBX的加法:
Add EAX,EBX;
ADC EDX,ECX;
14、INC(自加一)
写法:INC reg/mem;
作用:dest=dest+1;
15、XADD(交换加)
写法:XADD reg/mem, reg
作用:先将两个数交换,然将二者之和送给第一个数
16、SUB(减法)
写法:SUB reg/mem, reg/mem/imm;
作用:dest=dest-src;
SBB(带借位减法)
写法:SBB reg/mem, reg/mem/imm
作用:dest=dest-src-cf;
注意:两个操作数必须类型匹配,且不能同时是内存数
17、DEC(自减1)
写法:DEC reg/mem;
作用:dest=dest-1;
18、CMP(比较)
写法:CMP reg/mem, reg/mem/imm
作用:dest-src
注意:这里并不将结果存入dest中,而仅仅是执行相减的运算,达到依据运算结果去影响EFLAG标志位的效果
19、NEG(求补)
写法:NEG reg/mem
作用:求补就是求相反数,即:dest=0-dest;
20、CMPXCHG(比较交换)
写法:CMPXCHG reg/mem, reg;
作用:AL/AX/EAX-oprd1,如果等于0,则oprd1=oprd2,否则,AL/AX/EAX=oprd1;
即:比较AL/AX/EAX与第一个操作数,如果相等,则置ZF=1,并复制第二个操作数给第一个操作数;否则,置ZF=0,并复制第一个操作数给AL/AX/EAX。
说明:CMPXCHG主要为实现原子操作提供支持
CMPXCHG8B(8字节比较交换指令)
写法:CMPXCHG8B MEM64;
功能:将EDX:EAX中的64位数与内存的64位数进行比较,如果相等,则置ZF=1,并存储ECX:EBX到mem64指定的内存地址;否则,置ZF=0,并设置EDX:EAX为mem64的8字节内容
21、MUL(无符号乘法)
写法:MUL reg/mem;
作用:当操作数为8位时,AX=AL*src;
当操作数为16位时,DX:AX=AX*src;
当操作数为32位时,EDX:EAX=EAX*src;
22、IMUL(带符号位乘法)
写法:IMUL reg/mem;(作用同上)
IMUL reg16,reg16/mem16,imm16;
IMUL reg32,reg32/mem32,imm32;
IMUL reg16,imm16/reg16/imm16;
IMUL reg32,reg32/mem32/imm32;
注意:没有两个操作数均为8位的多操作数乘法。
对于同一个二进制数,采用MUL和IMUL执行的结果可能不同,设AL=0FF,BL=1,分别执行下面的指令,会得到不同的结果:
Mul bl; AX=0FFH(255);
Imul bl; AX=0FFFFH(-1)(高一半为低一半的扩展)
23、DIV(无符号除法 )/IDIV(带符号数除法)
写法:DIV reg/mem;/IDIC reg/mem
作用:如果操作数是8位,AX%SRC,结果商在AL、余数在AH中;
如果操作数是16位,DX:AX%SRC,结果商在AX,余数在DX中;
如果操作数是32位,EDX:EAX%SRC,结果商在EAX,余数在EDX中;
注意:不能直接实现8位数除8位数、16位数除16位数、32除32,若需要这样,则必须先把除数符号扩展或零扩展到16、32、64位,然后用除法指令。
对于IDIV,余数和被除数符号相同,如:-5 IDIV 2 = 商 -2,余数:-1;
在下列情况下,会使CPU产生中断:一:除数为0 ;二:由于商太大,导致EAX\AX或AL不能容纳,从而产生了溢出。
-----------------BCD码调整指令(十进制调整指令)待补充------------------------------------------------
24、关于BCD码:BCD码就是一种十进制数的二进制编码表示,分为压缩BCD码和非压缩BCD码,压缩BCD码用4个二进制位表示一个十进制位,即用0000B~1001B表示十进制0~9,如0110 0100 0010 1001B表示6429
用8位二进制来表示一个十进制叫非压缩BCD码,其中,低四位与压缩BCD码相同,高四位无意义。
压缩BCD码调整指令包括DAA(加法的压缩BCD码调整)和DAS(减法的压缩BCD码调整)
写法:
DAA;
作用:调整AL中的和为压缩BCD码。
功能:使用DAA指令时,通常先执行ADD/ADC指令,将两个压缩BCD码相加,结果存放在AL中,然后使用该指令将AL调整为压缩BCD码格式。
DAA的调整算法:
IF(AL低4位>9 或 AF=1)
THEN
AL=AL+6;
AF=1;
ENDIF
IF( AL高4位>9或CF=1)
THEN
AL=AL+60H;
CF=1;
ENDIF
说明:CF反映压缩BCD码相加的进位。
DAS;
作用:调整AL中的差为压缩BCD码。
功能:使用DAS指令时,通常先执行SUB/SBB指令,将两个压缩BCD码相减,结果存放在AL中,然后使用该指令将AL调整为压缩BCD码格式。
DAS的调整算法:
IF(AL低4位>9 或 AF=1)
THEN
AL=AL-6;
AF=1;
ENDIF
IF( AL高4位>9或CF=1)
THEN
AL=AL-60H;
CF=1;
ENDIF
说明:CF反映压缩BCD码相减的借位。
特别注意,如果使用DAA或DAS指令,则参加加法或减法运算的操作数应该是压缩BCD码,如果将任意两个二进制数相加或相减,然后调整,则得不到正确的结果。
关键是调整的规则,其中AF标志位就是专门为BCD码调整设计的,当低四位有向高四位进位或借位时,值为1。而CF就是最高位有进位或者借位时,为1.
非压缩BCD码调整指令,包括AAA,AAS,AAM,AAD。
写法:AAA ;
作用:调整AL中的和为非压缩BCD码;调整后,AL高4位等于0,AH=AH+产生的CF
功能:使用AAA指令时,通常先执行ADD/ADC指令,以AL为目的操作数,将两个非压缩BCD码(与高位无关)相加,然后使用AAA将AL调整为非压缩BCD码格式,且高4位等于0,同时,将调整产生的进位加到AH中。
AAA调整算法:
IF(AL低4位>9 或者 AF=1)
THEN
AL=AL+6;
AH=AH+1;
AF=1;
CF=1;
ELSE
AF=0;CF=0;
ENDIF
AL=AL AND OFH;;AL高4位清0
写法:AAS ;
作用:调整AL中的差为非压缩BCD码;调整后,AL高4位等于0,AH=AH-产生的CF
功能:使用AAS指令时,通常先执行SUB/SBB指令,以AL为目的操作数,将两个非压缩BCD码(与高位无关)相减,然后使用AAS将AL调整为非压缩BCD码格式,且高4位等于0,同时,将调整产生的借位从AH中减去。
AAA调整算法:
IF(AL低4位>9 或者 AF=1)
THEN
AL=AL-6;
AH=AH-1;
AF=1;
CF=1;
ELSE
AF=0;CF=0;
ENDIF
AL=AL AND OFH;;AL高4位清0
写法:AAM;
作用:AH=AX DIV 10, AL=AX MOD 10;
功能:使用AAM时,通常先执行MUL/IMUL指令,将两个一字节非压缩BCD码(高四位必须为0)相乘,结果存入AX.然后使用AAM指令将AX(AH=0)调整为两字节压缩BUC码格式。
写法:AAD;
作用:AL=AH*10+AL,AH=0;
功能:使用AAD时,通常先执行该指令,将AX中的两字节非压缩BCD码(AH与AL的高4位必须为0)调整为相应的二进制表示,然后使用DIV/IDIV指令,除以一个一字节的非压缩BCD码(高四位必须为0),可得到非压缩BCD码的除法结果。
特别注意,参加非压缩BCD码乘法或除法的操作数高4位必须为0。
-----------------------------算术指令结束-----------------------------------------------------------------------------
-----------------------------------------位操作指令开始-----------------------------------------------------
25、AND\OR\XOR\NOT\TEST
写法:
AND reg/mem,reg/mem/imm;
OR reg/mem,reg/mem/imm;
XOR reg/mem,reg/mem/imm;
NOT reg/mem;
TEST reg/mem,reg/mem/imm;
作用:AND\TEST\OR\XOR,两个操作数必须类型匹配,而且不能同时是内存操作数。
XOR通常用来将寄存器清0,如 XOR AX,AX;
TEST与AND的关系类似于CMP与SUB。TEST的典型用法是检查某位是否为1,如:
TEST DX,109H;
若 DX的第0,3,8位至少有一位为1,则 ZF=0,否则ZF=1;
26、移位指令
SHL(逻辑左移)
写法:SHL REG\mem,1\CL ;
作用:将dest的各个二进制位向左移动1(CL)位,并将DEST的最高位移出到CF,最低位移入0。
SAL(算术左移)
写法:SAL REG\mem,1\CL ;
作用:将dest的各个二进制位向左移动1(CL)位,并将DEST的最高位移出到CF,最低位移入0(同SHL)。
SHR(逻辑右移)
写法:SHR REG\mem,1\CL ;
作用:将dest的各个二进制位向左移动1(CL)位,并将DEST的最低位移出到CF,最高位移入0。
SAR(算术右移)
写法:SAR REG\mem,1\CL ;
作用:将dest的各个二进制位向左移动1(CL)位,并将DEST的最低位移出到CF,最高位不变。
SHLD(双精度左移)
写法:SHLD REG16/REG32/MEM16/MEM32, REG16/REG32, IMM8/CL;(类型须匹配)
作用:将OPRD1的各二进制左移,并将oprd1的最高位移到CF,oprd2的最高位移到oprd1的最低位,但是,oprd2的值不变。
SHRD(双精度右移)
写法与作用与双精度左移类似。注意移动方向为右移。
以上位移指令对标志位的影响:
若移位后符号位发生了变化,则OF=1,否则OF=0;CF为最后移入位;按一般规则影响ZF与SF。然而,若移位次数为0,则不影响标志位;若移位次数大于1,则OF无定义。
27、循环移位指令
ROL(循环左移)
写法:ROL REG\MEM, 1\CL;或 ROL REG/MEM,IMM8;(类型可不匹配)
作用:将DEST的各二进制位向左移动,并将最高位移出到CF,并同时移入最低位。
ROR(循环右移)
写法:ROR REG\MEM, 1\CL;或 ROR REG/MEM,IMM8;(类型可不匹配)
作用:将DEST的各二进制位向右移动,并将最低位移出到CF,并同时移入最高位。
RCL(带进位循环左移)
写法:RCL REG\MEM, 1\CL;或 RCL REG/MEM,IMM8;(类型可不匹配)
作用:将DEST的各二进制位向左移动,并将最高位移出到CF,原CF移入最低位。
RCR(带进位循环右移)
写法:RCR REG\MEM, 1\CL;或 RCR REG/MEM,IMM8;(类型可不匹配)
作用:将DEST的各二进制位向右移动,并将最低位移出到CF,原CF移入最高位。
28、位测试指令
BT(位测试)
写法:BT REG16/MEM16,REG16/IMM8;或BT REG32/MEM32,REG32/IMM8;
作用:CF=DEST的第index位,dest不变。
BTS(位测试并置位)
写法:BTS REG16/MEM16,REG16/IMM8;或BTS REG32/MEM32,REG32/IMM8;
作用:CF=DEST的第index位,dest的第index位=1;
BTR(位测试并复位)
写法:BTR REG16/MEM16,REG16/IMM8;或BTR REG32/MEM32,REG32/IMM8;
作用:CF=DEST的第index位,dest的第index位=0;
BTC(位测试并复位)
写法:BTC REG16/MEM16,REG16/IMM8;或BTC REG32/MEM32,REG32/IMM8;
作用:CF=DEST的第index位,dest的第index位取反;
说明:若dest为寄存器,则以index除以16(dest为reg16)或32(dest为reg32)的余数作为测试位。当然,index最好不要超出操作数的位数。
若dest为内存操作数,则无论其类型为字或双字,测试位为相对于起始地址的位移,例如,设BX=50,X为字类型的变量,则执行指令BT X,BX;后,CF=X+6单元的第2位,因为50%8=6余2.
BTS、BTC、BTR指令可用于并发程序设计。
29、位扫描指令
BSF(前向位扫描)
写法:BSF reg16/reg32, reg16/reg32/mem16/mem32;(类型须匹配)
作用:dest=src中值为1的最低位编号(从低位向高位搜索)
BSR(后向位扫描)
写法:BSR reg16/reg32, reg16/reg32/mem16/mem32;(类型须匹配)
作用:dest=src中值为1的最高位编号(从高位向低位搜索)
说明:BSF和BSR搜索SRC操作数中首次出现1的位置,BSF从低位向高位搜索,BSR反之。若找到一个1,则置ZF=0,并存储位编号到DEST操作数中。若SRC=0,即没有1出现,则置ZF=1,且dest的值不确定。
比如,有如下二进制数0111 1111 1010 0100
执行bsf后,位编号为2,执行bsr后,位编号为14.
30、条件置位指令
通用写法:SETcc reg8/mem8
作用:若条件cc成立,则dest=1,否则,dest=0;
SETcc有很多种命令形式,这里的cc只是一个描述符,具体的参见下面的三个表,其中,E(Equal)表示相等,G(Greatet)表示带符号大于,L(Less)表示带符号小于,A(Above)表示无符号大于,B(Below)表示无符号小于。
表一:测试单个标志位的SETcc指令:
SETcc指令 |
描述 |
置1条件 |
SETC,SETB,SETNAE |
有进位时置1 |
CF=1 |
SETNC,SETNB,SETAE |
无进位时置1 |
CF=0 |
SETZ,SETE |
为0(相等)时置1 |
ZF=1 |
SETNA,SETNE |
非0(不等)时置1 |
ZF=0 |
SETS |
为负时置1 |
SF=1 |
SETNS |
为正时置1 |
SF=0 |
SET0 |
溢出时置1 |
OF=1 |
SETNO |
不溢出时置1 |
OF=0 |
SETP,SETPE |
‘1’的个数为偶数时置1 |
PF=1 |
SETNP,SETPO |
‘1’的个数为奇数时置1 |
PF=0 |
表二:用于带符号数比较的SETcc指令,这些指令常用在CMP指令之后,以判断带符号数的大小:
SETcc指令 |
描述 |
置1条件 |
SETG,SETNLE |
大于(不小于等于)时置1 |
SF=OF且ZF=0 |
SETGE,SETNL |
大于等于(不小于)时置1 |
SF=OF |
SETL,SETNGE |
小于(不大于等于)时置1 |
SF≠OF |
SETLE,SETNG |
小于等于(不大于)时置1 |
SF≠OF或ZF=1 |
表三:用于无符号数比较的SETcc指令,常用在CMP指令之后,用来判断无符号数的大小:
SETcc指令 |
描述 |
置1条件 |
SETA,SETNBE |
大于(不小于等于)时置1 |
CF=0且ZF=0 |
SETAE,SETNB,SETNC |
大于等于(不小于)时置1 |
CF=0 |
SETB,SETNAE,SETC |
小于(不大于等于)时置1 |
CF=1 |
SETBE,SETNA |
小于等于(不大于)时置1 |
CF=1或ZF=1 |
-----------------------------------------位操作指令结束----------------------------------------------------