Hadoop源码篇---解读Mapprer源码Input输入

时间:2021-05-21 01:14:52

一。前述

上次分析了客户端源码,这次分析mapper源码让大家对hadoop框架有更清晰的认识

二。代码

自定义代码如下:

public class MyMapper extends  Mapper<Object, Text, Text, IntWritable>{

       private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}

继承Mapper源码如下:

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {

  /**
* The <code>Context</code> passed on to the {@link Mapper} implementations.
*/
public abstract class Context
implements MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
} /**
* Called once at the beginning of the task.
*/
protected void setup(Context context
) throws IOException, InterruptedException {
// NOTHING
} /**
* Called once for each key/value pair in the input split. Most applications
* should override this, but the default is the identity function.
*/
@SuppressWarnings("unchecked")
protected void map(KEYIN key, VALUEIN value,
Context context) throws IOException, InterruptedException {
context.write((KEYOUT) key, (VALUEOUT) value);
} /**
* Called once at the end of the task.
*/
protected void cleanup(Context context
) throws IOException, InterruptedException {
// NOTHING
} /**
* Expert users can override this method for more complete control over the
* execution of the Mapper.
* @param context
* @throws IOException
*/
public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
} finally {
cleanup(context);
}
}
}

解析:我们重新了map方法,所以传进run方法中才能不断执行。

MapperTask源码解析:

Container封装了一个脚本命令,通过远程调用启动Yarnchild,如果是MapTask任务,然后把反射城MapTask的对象,启动mapTask的run方法

Maptask中的run方法:

public void run(final JobConf job, final TaskUmbilicalProtocol umbilical)
throws IOException, ClassNotFoundException, InterruptedException {
this.umbilical = umbilical; if (isMapTask()) {
// If there are no reducers then there won't be any sort. Hence the map
// phase will govern the entire attempt's progress.
if (conf.getNumReduceTasks() == 0) {//假如没有reduce阶段
mapPhase = getProgress().addPhase("map", 1.0f);
} else {
// If there are reducers then the entire attempt's progress will be
// split between the map phase (67%) and the sort phase (33%).
mapPhase = getProgress().addPhase("map", 0.667f);
sortPhase = getProgress().addPhase("sort", 0.333f);//假如有reduce阶段需要排序,说明没有reduce任务则不需要排序
}
}
 if (useNewApi) {
      runNewMapper(job, splitMetaInfo, umbilical, reporter);//用新api
    } else {
      runOldMapper(job, splitMetaInfo, umbilical, reporter);
    }
    done(umbilical, reporter);
  }

runNewMapper解析:

private <INKEY,INVALUE,OUTKEY,OUTVALUE>
  void runNewMapper(final JobConf job,
                    final TaskSplitIndex splitIndex,
                    final TaskUmbilicalProtocol umbilical,
                    TaskReporter reporter
                    ) throws IOException, ClassNotFoundException,
                             InterruptedException {
    // make a task context so we can get the classes
    org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
      new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, //我们自定义的job
                                                                  getTaskID(),
                                                                  reporter);//创建上下文
    // make a mapper
    org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =
      (org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
        ReflectionUtils.newInstance(taskContext.getMapperClass(), job);//反射把自定的Mapper类反射出来 对应解析1
    // make the input format
    org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =
      (org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
        ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);//反射把自定的InputFormat类反射出来 对应解析2
    // rebuild the input split
    org.apache.hadoop.mapreduce.InputSplit split = null;
    split = getSplitDetails(new Path(splitIndex.getSplitLocation()),//每一个切片条目对应的是一个MapTask 每个切片中对应的4个东西(文件归属,偏移量,长度,位置信息)
        splitIndex.getStartOffset());
    LOG.info("Processing split: " + split);     org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
      new NewTrackingRecordReader<INKEY,INVALUE>//对应解析3
        (split, inputFormat, reporter, taskContext);//上面准备的输入格式化和切片为输入准备,拿到流,怎么读按文本方式读,行级
    
    job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
    org.apache.hadoop.mapreduce.RecordWriter output = null;
    
    // get an output object
    if (job.getNumReduceTasks() == 0) {
      output =
        new NewDirectOutputCollector(taskContext, job, umbilical, reporter);
    } else {
      output = new NewOutputCollector(taskContext, job, umbilical, reporter);
    }     org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE>
    mapContext =
      new MapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(), //对应解析4
          input, output, //mapContext即上下文对象封装了输入输出,所以可通过上下文拿到值 则可以得出Mapper类中的content的getCurrentyKey实际上是取得输入对象的LineRecorder
          committer,
          reporter, split);     org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context
        mapperContext =
          new WrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(
              mapContext);
try {
input.initialize(split, mapperContext);//输入 对应解析5
mapper.run(mapperContext);//run 对应解析6
mapPhase.complete();
setPhase(TaskStatus.Phase.SORT);
statusUpdate(umbilical);
input.close();
input = null;
output.close(mapperContext);//输出
output = null;
} finally {
closeQuietly(input);
closeQuietly(output, mapperContext);
}
}

解析1源码

 @SuppressWarnings("unchecked")
public Class<? extends Mapper<?,?,?,?>> getMapperClass()
throws ClassNotFoundException {
return (Class<? extends Mapper<?,?,?,?>>)
conf.getClass(MAP_CLASS_ATTR, Mapper.class);//用户配置则从配置中取,如果没设置取默认。
}

解析2源码

 public Class<? extends InputFormat<?,?>> getInputFormatClass()
throws ClassNotFoundException {
return (Class<? extends InputFormat<?,?>>)
conf.getClass(INPUT_FORMAT_CLASS_ATTR, TextInputFormat.class);//如果用户设置取用户的,没有则取TextinputfRrmat!!!
}

结论:框架默认使用的是TextInputFormat!!!

补充:继承关系InputFormat>FileInputformat>textInputformat

Hadoop源码篇---解读Mapprer源码Input输入

解析3源码:

static class NewTrackingRecordReader<K,V>
extends org.apache.hadoop.mapreduce.RecordReader<K,V> {
private final org.apache.hadoop.mapreduce.RecordReader<K,V> real;
private final org.apache.hadoop.mapreduce.Counter inputRecordCounter;
private final org.apache.hadoop.mapreduce.Counter fileInputByteCounter;
private final TaskReporter reporter;
private final List<Statistics> fsStats; NewTrackingRecordReader(org.apache.hadoop.mapreduce.InputSplit split,
org.apache.hadoop.mapreduce.InputFormat<K, V> inputFormat,
TaskReporter reporter,
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext)
throws InterruptedException, IOException {
this.reporter = reporter;
this.inputRecordCounter = reporter
.getCounter(TaskCounter.MAP_INPUT_RECORDS);
this.fileInputByteCounter = reporter
.getCounter(FileInputFormatCounter.BYTES_READ); List <Statistics> matchedStats = null;
if (split instanceof org.apache.hadoop.mapreduce.lib.input.FileSplit) {
matchedStats = getFsStatistics(((org.apache.hadoop.mapreduce.lib.input.FileSplit) split)
.getPath(), taskContext.getConfiguration());
}
fsStats = matchedStats; long bytesInPrev = getInputBytes(fsStats);
this.real = inputFormat.createRecordReader(split, taskContext);解析3.1 源码 real来源Linerecordere
long bytesInCurr = getInputBytes(fsStats);
fileInputByteCounter.increment(bytesInCurr - bytesInPrev);
}
解析3.1 源码
public class TextInputFormat extends FileInputFormat<LongWritable, Text> {

  @Override
public RecordReader<LongWritable, Text>
createRecordReader(InputSplit split,
TaskAttemptContext context) {
String delimiter = context.getConfiguration().get(
"textinputformat.record.delimiter");
byte[] recordDelimiterBytes = null;
if (null != delimiter)
recordDelimiterBytes = delimiter.getBytes(Charsets.UTF_8);
return new LineRecordReader(recordDelimiterBytes);//返回Linerorder,行读取器
}

解析4源码:

 public MapContextImpl(Configuration conf, TaskAttemptID taskid,
RecordReader<KEYIN,VALUEIN> reader,//reader即输入对象
RecordWriter<KEYOUT,VALUEOUT> writer,
OutputCommitter committer,
StatusReporter reporter,
InputSplit split) {
super(conf, taskid, writer, committer, reporter);
this.reader = reader;
this.split = split;
}
 /**
   * Get the input split for this map.
   */
  public InputSplit getInputSplit() {
    return split;
  }   @Override
  public KEYIN getCurrentKey() throws IOException, InterruptedException {
    return reader.getCurrentKey();//调用输入的input 包含一个Linerecorder对象
  }   @Override
  public VALUEIN getCurrentValue() throws IOException, InterruptedException {
    return reader.getCurrentValue();
  }   @Override
  public boolean nextKeyValue() throws IOException, InterruptedException {
    return reader.nextKeyValue();
  }

解析5源码:

public void initialize(InputSplit genericSplit,
TaskAttemptContext context) throws IOException {
FileSplit split = (FileSplit) genericSplit;
Configuration job = context.getConfiguration();
this.maxLineLength = job.getInt(MAX_LINE_LENGTH, Integer.MAX_VALUE);
start = split.getStart();//切片的起始位置
end = start + split.getLength();//切片的结束位置
final Path file = split.getPath(); // open the file and seek to the start of the split
final FileSystem fs = file.getFileSystem(job);
fileIn = fs.open(file); CompressionCodec codec = new CompressionCodecFactory(job).getCodec(file);
if (null!=codec) {
isCompressedInput = true;
decompressor = CodecPool.getDecompressor(codec);
if (codec instanceof SplittableCompressionCodec) {
final SplitCompressionInputStream cIn =
((SplittableCompressionCodec)codec).createInputStream(
fileIn, decompressor, start, end,
SplittableCompressionCodec.READ_MODE.BYBLOCK);
in = new CompressedSplitLineReader(cIn, job,
this.recordDelimiterBytes);
start = cIn.getAdjustedStart();
end = cIn.getAdjustedEnd();
filePosition = cIn;
} else {
in = new SplitLineReader(codec.createInputStream(fileIn,
decompressor), job, this.recordDelimiterBytes);
filePosition = fileIn;
}
} else {
fileIn.seek(start);//很多mapper 去读对应的切片数量
in = new UncompressedSplitLineReader(
fileIn, job, this.recordDelimiterBytes, split.getLength());
filePosition = fileIn;
}
// If this is not the first split, we always throw away first record
// because we always (except the last split) read one extra line in
// next() method.
if (start != 0) {//除了第一个切片
start += in.readLine(new Text(), 0, maxBytesToConsume(start));//匿名写法 输入初始化的时候 对于非第一个切片 读一行放空,算出长度,然后更新起始位置为第二行 这样每一个切片处理完的时候再多处理一行,这样就能保证还原。!!!
}
this.pos = start;
}

解析6实际上调用的就是Mapper中的run方法。

public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
while (context.nextKeyValue()) {/解析6.1
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
} finally {
cleanup(context);
}
}
}

解析6.1追踪后实际上调用的是LineRewcorder中的NextKeyValue方法

public boolean nextKeyValue() throws IOException {
if (key == null) {
key = new LongWritable();//Key中要放置偏移量
}
key.set(pos);//偏移量
if (value == null) {
value = new Text();//默认
}
int newSize = 0;
// We always read one extra line, which lies outside the upper
// split limit i.e. (end - 1)
while (getFilePosition() <= end || in.needAdditionalRecordAfterSplit()) {
if (pos == 0) {
newSize = skipUtfByteOrderMark();
} else {
newSize = in.readLine(value, maxLineLength, maxBytesToConsume(pos));//读到真的值了
pos += newSize;
} if ((newSize == 0) || (newSize < maxLineLength)) {
break;
} // line too long. try again
LOG.info("Skipped line of size " + newSize + " at pos " +
(pos - newSize));
}
if (newSize == 0) {
key = null;
value = null;
return false;
} else {
return true;
}
}
@Override//由nextkeyValue更新值所以直接取值这块 这种取值方式叫做引用传递!!!
  public LongWritable getCurrentKey() {
    return key;
  }   @Override
  public Text getCurrentValue() {
    return value;
  }

持续更新中。。。。,欢迎大家关注我的公众号LHWorld.



Hadoop源码篇---解读Mapprer源码Input输入