Given two words (beginWord and endWord), and a dictionary, find the length of shortest transformation sequence from beginWord to endWord, such that: Only one letter can be changed at a time
Each intermediate word must exist in the dictionary
For example, Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length . Note:
Return if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.
Runtime:628ms
hit->hot->dot->dog->cog
hit->hot->lot->log->dog->cog
采用队列的优势就在只会在头部删除,尾部添加。
在队列中存在两元素 dot lot 时,dot启动查找匹配找到dict中存在的元素dog,并将其添加到队列中,因为队列的特性,dog会添加在lot之后
下一轮会先取出lot,这样就保证了每轮查找不同分支之间平行进行,最先return的就是最短的transformation
public class Solution {
public int ladderLength(String beginWord, String endWord, Set<String> wordDict) {
if (wordDict == null || wordDict.size() == 0) {
return 0;
}
Queue<String> queue = new LinkedList<String>();
queue.offer(beginWord);
wordDict.remove(beginWord);
int length = 1;
while(!queue.isEmpty()) {
int count = queue.size();
for(int i=0; i<count; i++) {
//Retrieves and removes the head of this queue, or returns null if this queue is empty
String current = queue.poll();
for (char c = 'a'; c<='z'; c++) {
for (int j=0; j < current.length(); j++) {
if(c == current.charAt(j)) {
continue;
}
String tmp = replace(current, j, c);
if(tmp.equals(endWord)) {
return length +1;
}
if(wordDict.contains(tmp)) {
queue.offer(tmp);
wordDict.remove(tmp);
}
}
} }
length++;
}
return 0;
} private String replace(String s, int index ,char c) {
char[] chars = s.toCharArray();
chars[index] = c;
return new String(chars);
}
}