题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1284
Problem Description
Input
Output
Sample Input
Sample Output
解题思路:这道题可以当做数学题来做。假设某种方案要使用i枚3分硬币(i∈[0,n/3]),那么剩下的就有n-3*i分需要用2分和1分补全。对于2分硬币的个数,可能使用0,1,·····(n-3*i)/2枚,剩下的全都用1分硬币即可。也就是说当使用i枚3分硬币时,就会产生出{(n-3*i)/2+1}*1=(n-3*i)/2+1种方案,那么只要枚举i,将所有方案数相加即可。
AC代码一:
#include<bits/stdc++.h>
using namespace std;
int main(){
int sum,n;
while(cin>>n){
sum=;
for(int i=;i*<=n;++i)
sum+=(n-i*)/+;
cout<<sum<<endl;
}
return ;
}
AC代码二:考虑dp,dp[j]表示用若干个硬币组成钱j的方案数,易得状态转移方程为:dp[j]+=dp[j-i](j>=i),意思是当前币值是i,那么在组成钱j的基础上还可以这样增加新的方案数:用之前的j-i分再和当前i分组成钱j即增加了dp[j-i]*1这么多的方案数。举个栗子:现将3分钱兑换成硬币的所有方案数有①1+1+1=3--->1种;②去掉2枚1分换成1枚2分的硬币1+2=3,那么增加了之前的1种方案数,现共有2种方案数(dp[3]+=dp[3-2]);③还有一种就是用1枚3分的硬币替换3枚1分的硬币3+0=3,定义组成0钱的方案数为1种,那么此时也增加1种方案数(dp[3]+=dp[3-3]),所以组成3分钱共有3种方案数。注意:初始化dp数组全为0,定义dp[0]=1,因为组成钱0(事实上钱0是由钱i-i=0即i=i这种情况得来的)也算一种方案数,然后对于每种币值,从i~最大35000枚举更新累加对应组成钱j的方案数即可。
#include<bits/stdc++.h>
using namespace std;
int main(){
int n,dp[]={};
for(int i=;i<=;++i)//币值
for(int j=i;j<;++j)//钱j,每种硬币可以有无限个-->完全背包
dp[j]+=dp[j-i];
while(cin>>n){cout<<dp[n]<<endl;}
return ;
}
AC代码三(936ms):用母函数做有点危险了-->差点TLE=_=||,还是贴一下代码吧233!
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int n,c1[maxn],c2[maxn];
void init(){
memset(c1,,sizeof(c1));
memset(c2,,sizeof(c2));
c1[]=;
for(int i=;i<=;++i){
for(int j=;j<maxn;++j)
for(int k=;j+k<maxn;k+=i)
c2[j+k]+=c1[j];
for(int j=;j<maxn;++j)
c1[j]=c2[j],c2[j]=;
}
}
int main(){
init();
while(~scanf("%d",&n)){
printf("%d\n",c1[n]);
}
return ;
}