牛顿迭代法是求开n次方近似解的一种方法,本文参考。
引言
假如\(x^n = m\),我们需要求x的近似值。
- 我们设\(f(x) = x^n - m\), 那么也就是求该函数f(x)=0时与x轴的交点的值,也就是f(x)=0时方程的根。
算法介绍
感觉和物理做实验一样,先通过实验观察,再找出对应理论来解释现象。
这个算法不是推导出来的,是首先通过观察发现,再来证明推导,哈哈哈~
以下结论都是建立在f(x)二阶可导的情况下成立。
牛顿发现随便找一个曲线上的A点(为什么随便找,根据切线是切点附近的曲线的近似,应该在根点附近找,但是很显然我们现在还不知道根点在哪里),做一个切线,切线的根(就是和x轴的交点)与曲线的根,还有一定的距离。牛顿、拉弗森们想,没关系,我们从这个切线的根出发,做一根垂线,和曲线相交于B点,继续重复刚才的工作:
之前说过,B点比之前A点更接近曲线的根点,牛顿、拉弗森们很兴奋,继续重复刚才的工作:
经过多次迭代后会越来越接近曲线的根(下图进行了50次迭代,哪怕经过无数次迭代也只会更接近曲线的根,用数学术语来说就是,迭代收敛了):
总结
已知曲线方程\(f(x) = x^n - m\),我们随机取一点\(x_1\):
- \(x_1\)处切线方程为:\(y - f(x_1) = f^{'}(x_1)(x - x_1)\),此方程与x轴的交点为\(x_2\)为:
- \(x_2 = x_1 - \frac{f(x_1)}{f^{'}(x_1)} = x_1 - \frac{x_1^n - m}{nx_1^{n-1}}\)
- 一直到\(x_{N+1} = x_N - \frac{x_N^n - m}{nx_N^{n-1}}\),从而近似求解开n次方。
算法实现(go)
这是go tutorial里的一个练习,求开方。求开n次方同理。只需要改成z = z - (Pow(z,n) - m)/(n*Pow(z,(n-1)))
就行了。
注意这里的z = (z + x/z)/2
也就是\(z = \frac{z^2+x}{2z}\)也等于我们这里当\(n=2\)时,\(z - \frac{z^2-x}{2z}\),在代码里也就是反复更新迭代z的值,缩小误差。
package main
import (
"fmt"
"math"
)
func Sqrt(x float64) float64 {
z := float64(1)
tmp := float64(0)
for math.Abs(tmp - z) > 0.0000000001 {
tmp = z
z = (z + x/z)/2
}
return z
}
func main() {
fmt.Println(Sqrt(2))
fmt.Println(math.Sqrt(2))
}