二分法和牛顿迭代实现开根号函数:OC的实现

时间:2022-07-09 00:18:02

最近有人贴出BAT的面试题,题目链接

二分法和牛顿迭代实现开根号函数:OC的实现

就是实现系统的开根号的操作,并且要求一定的误差,其实这类题就是两种方法,二分法牛顿迭代,现在用OC的方法实现如下:

第一:二分法实现

-(double)sqrt_binary:(int)num {
double x = sqrt(num);
double y = num / 2;
double low = 0.0;
double up = num;
int count = 1; while (fabs(y-x) > 0.000000001) {
NSLog(@"--count:%d %f",count,y); count ++;
if (y * y > num) {
up = y;
y = low + (up - low)/2;
}else{
low = y;
y = up -(up-low)/2;
}
} return y;
} //调用
double result = [self sqrt_binary:5];
NSLog(@"my result:%f--real result:%f",result,sqrt(5));

第二:牛顿迭代

-(double)sqrt_newton:(int)num {
double x = sqrt(num);
double y = num/2;
int count = 1; while (fabs(y-x) > 0.000000001) {
NSLog(@"--count:%d %f",count,y); count ++; y = (y + num/y)/2.0;
} return y;
} //调用
double result = [self sqrt_newton:5];
NSLog(@"my result:%f--real result:%f",result,sqrt(5));

参考 :二分法和牛顿迭代法求平方根(Python实现)