UVA10375 Choose and divide 质因数分解

时间:2022-04-16 23:38:55

质因数分解:

Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

id=19601" class="login ui-button ui-widget ui-state-default ui-corner-all ui-button-text-only" style="display:inline-block; position:relative; padding:0px; margin-right:0.1em; vertical-align:middle; overflow:visible; text-decoration:none; font-family:Verdana,Arial,sans-serif; border:1px solid rgb(211,211,211); color:blue; font-size:12px!important">Submit

 Status

Description

UVA10375 Choose and divide 质因数分解

Problem D: Choose and divide

The binomial coefficient C(m,n) is defined as

         m!
C(m,n) = --------
n!(m-n)!

Given four natural numbers pqr, and s, compute the the result of dividing C(p,q) by C(r,s).

The Input

Input consists of a sequence of lines. Each line contains four non-negative integer numbers giving values for pqr, and s, respectively, separated by a single space. All the numbers will be smaller than 10,000 with p>=q and r>=s.

The Output

For each line of input, print a single line containing a real number with 5 digits of precision in the fraction, giving the number as described above. You may assume the result is not greater than 100,000,000.

Sample Input

10 5 14 9
93 45 84 59
145 95 143 92
995 487 996 488
2000 1000 1999 999
9998 4999 9996 4998

Output for Sample Input

0.12587
505606.46055
1.28223
0.48996
2.00000
3.99960

Source

Root :: AOAPC II: Beginning Algorithm Contests (Second Edition) (Rujia Liu) :: Chapter 10. Maths :: Examples

Root :: AOAPC I: Beginning Algorithm Contests (Rujia Liu) :: Volume 6. Mathematical Concepts and Methods

Root :: Competitive Programming 2: This increases the lower bound of Programming Contests. Again (Steven & Felix Halim) :: Mathematics :: Combinatorics :: 

option=com_onlinejudge&Itemid=8&category=405" style="color:blue; text-decoration:none">Binomial
Coefficients



Root :: Competitive Programming 3: The New Lower Bound of Programming Contests (Steven & Felix Halim) :: Mathematics :: Combinatorics :: Binomial
Coefficients




Root :: Competitive Programming: Increasing the Lower Bound of Programming Contests (Steven & Felix Halim) :: Chapter 5. Mathematics :: Combinatorics

Root :: Prominent Problemsetters :: Gordon V. Cormack

Submit Status

UVA10375 Choose and divide 质因数分解
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm> using namespace std; const int maxn=10010; int p,q,r,s; int prime[maxn],pn;
long long int fnum[maxn],pnum[maxn];
bool vis[maxn]; void pre_init()
{
memset(vis,true,sizeof(vis));
for(int i=2; i<maxn; i++)
{
if(i%2==0&&i!=2) continue;
if(vis[i]==true)
{
prime[pn++]=i;
for(int j=2*i; j<maxn; j+=i)
{
vis[j]=false;
}
}
}
} void fenjie_x(int x,long long int* arr)
{
for(int i=0; i<pn&&x!=1; i++)
{
while(x%prime[i]==0)
{
arr[i]++;
x/=prime[i];
}
}
} void fenjie(int x,long long int* arr)
{
for(int i=2; i<=x; i++)
fenjie_x(i,arr);
} void jianshao()
{
for(int i=0; i<pn; i++)
{
long long int Min=min(fnum[i],pnum[i]);
fnum[i]-=Min;
pnum[i]-=Min;
}
} int main()
{
pre_init();
while(scanf("%d%d%d%d",&p,&q,&r,&s)!=EOF)
{
memset(pnum,0,sizeof(pnum));
memset(fnum,0,sizeof(fnum));
fenjie(p,pnum);fenjie(s,pnum);fenjie(r-s,pnum);
fenjie(q,fnum);fenjie(r,fnum);fenjie(p-q,fnum);
jianshao();
double ans=1.;
for(int i=0; i<pn; i++)
{
while(pnum[i]--)
{
ans*=1.*prime[i];
}
while(fnum[i]--)
{
ans/=1.*prime[i];
}
}
printf("%.5lf\n",ans);
}
return 0;
}

版权声明:来自: 代码代码猿猿AC路 http://blog.csdn.net/ck_boss