嗯,这是一道简单题
注意二叉搜索树的子树中序一定是连续的
又因为取值修改是任意的并且修改代价与权值无关
不难想到把权值离散化,然后按找数据值排序,然后dp
f[i][j][w]表示从i~j的节点构成一棵子树且所有节点权值都大于等于w的最小代价和
转移很明显,记忆化搜索即可
const inf=; var f:array[..,..,..] of longint;
s,a,b,c,d,p:array[..] of longint;
i,n,m,k:longint; procedure min(var a:longint; b:longint);
begin
if a>b then a:=b;
end; procedure swap(var a,b:longint);
var c:longint;
begin
c:=a;
a:=b;
b:=c;
end; procedure sort1(l,r:longint);
var i,j,x:longint;
begin
i:=l;
j:=r;
x:=b[(l+r) shr ];
repeat
while b[i]<x do inc(i);
while x<b[j] do dec(j);
if not(i>j) then
begin
swap(b[i],b[j]);
swap(d[i],d[j]);
inc(i);
dec(j);
end;
until i>j;
if l<j then sort1(l,j);
if i<r then sort1(i,r);
end; procedure sort2(l,r:longint);
var i,j,x:longint;
begin
i:=l;
j:=r;
x:=a[(l+r) shr ];
repeat
while a[i]<x do inc(i);
while x<a[j] do dec(j);
if not(i>j) then
begin
swap(a[i],a[j]);
swap(c[i],c[j]);
swap(p[i],p[j]);
inc(i);
dec(j);
end;
until i>j;
if l<j then sort2(l,j);
if i<r then sort2(i,r);
end; function dp(l,r,m:longint):longint;
var i:longint;
begin
if l>r then exit();
if f[l,r,m]<>- then exit(f[l,r,m]);
f[l,r,m]:=inf;
for i:=l to r do
begin
min(f[l,r,m],dp(l,i-,m)+dp(i+,r,m)+k);
if p[i]>=m then
min(f[l,r,m],dp(l,i-,p[i]+)+dp(i+,r,p[i]+));
end;
f[l,r,m]:=f[l,r,m]+s[r]-s[l-];
exit(f[l,r,m]);
end; begin
readln(n,k);
for i:= to n do
begin
read(a[i]);
d[i]:=i;
end;
for i:= to n do
read(b[i]);
for i:= to n do
read(c[i]);
sort1(,n);
m:=;
p[d[]]:=;
for i:= to n do
begin
if b[i]<>b[i-] then inc(m);
p[d[i]]:=m;
end;
sort2(,n);
for i:= to n do
s[i]:=s[i-]+c[i];
fillchar(f,sizeof(f),);
writeln(dp(,n,));
end.