关于使用lazytag的线段树两种查询方式的比较研究

时间:2022-07-19 22:45:54

说到线段树,想来大家并不陌生——最基本的思路就是将其规划成块,然后只要每次修改时维护一下即可。

但是尤其是涉及到区间修改时,lazytag的使用往往能够对于程序的质量起到决定性作用(Ex:一般JSOI2008左右的线段树题目,如果有区间修改的话,那么假如普普通通的一个个修改的话,那么一般30分左右,甚至更少;而有了神奇的lazytag,只要别的地方写的还算基本到位,一般就Accept了)

lazytag的基本思想也就是在需要修改的区间打上标记,然后下次动态维护标记和真正值之间的关系,然后查询或者下一个修改操作涉及此区间时,进行进一步维护。

于是,此时就存在两种不同的查询操作了(此处以BZOJ1798为例)

方案一:当查询过程中,遇到了带有标记的点,则将其记录下来(即并入综合的修改参数里面),然后当刚好找到合适区间是,再操作之

 function cal(z,x,y,l,r:longint;d:vet):int64;inline;
var d1:vet;
begin
if l>r then exit();
d1:=merge(b[z],d);
if (x=l) and (y=r) then exit(((a[z]*d1.a0) mod p+(d1.a1*((r-l+) mod p)) mod p) mod p);
exit((cal(z*,x,(x+y) div ,l,min((x+y) div ,r),d1)+cal(z*+,(x+y) div +,y,max((x+y) div +,l),r,d1)) mod p);
end;

这个方案在操作时,实际上并没有动任何的标记,直接通过现有的标记求出了值

方案二:查询过程中遇到标记点的话,则将其扩展下去,保证一路下来都不存在标记点,然后到地方了之后直接返回数值

 function cal(z,x,y,l,r:longint):int64;inline;
begin
if l>r then exit();
ext(z,x,y);
if (x=l) and (y=r) then exit(a[z]);
exit((cal(z*,x,(x+y) div ,l,min((x+y) div ,r))+cal(z*+,(x+y) div +,y,max((x+y) div +,l),r)) mod p);
end;

附:ext操作和merge操作

 function merge(d1,d2:vet):vet;inline;
var d3:vet;
begin
d3:=d1;
d3.a0:=d3.a0 mod p;d3.a1:=d3.a1 mod p;
d2.a0:=d2.a0 mod p;d2.a1:=d2.a1 mod p;
d3.a0:=(d3.a0*d2.a0) mod p;
d3.a1:=((d3.a1*d2.a0) mod p+d2.a1) mod p;
exit(d3);
end;
procedure ext(z,x,y:longint);inline;
begin
a[z]:=((a[z]*b[z].a0) mod p+(b[z].a1*((y-x+) mod p)) mod p) mod p;
b[z*]:=merge(b[z*],b[z]);
b[z*+]:=merge(b[z*+],b[z]);
b[z].a0:=;b[z].a1:=;
end;

此方法比较直观,比较好想,但是看样子好多标记其实被操作了

好了,现在看下时间对比:(注:此两个程序中除了cal函数不一样其他均一样)

方案一:

关于使用lazytag的线段树两种查询方式的比较研究

方案二:(这个里面方案一的cal函数是通过{}注释掉的,所以代码会多出来那么些)

关于使用lazytag的线段树两种查询方式的比较研究

空间上差不多(phile:这不显然的么呵呵呵),时间上方案一要快,原因其实还是因为方案一并没有涉及到修改标记的操作,而方案二涉及了,而且尤其对于tag很密集的树,操作更是会较为复杂。还有方案二虽然更加直观易想,但是代码其实并没有缩减,两者代码复杂度几乎一样。所以综合而言,方案一更加划算么么哒

下面附上BZOJ1798代码

 /**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ type
vet=record
a0,a1:int64;
end;
var
i,j,k,l,m,n,a2,a3,a4:longint;
p:int64;
a,c:array[..] of int64;
b:array[..] of vet;
d,d1:vet;
procedure built(z,x,y:longint);inline;
begin
if x=y then
a[z]:=c[x] mod p
else
begin
built(z*,x,(x+y) div );
built(z*+,(x+y) div +,y);
a[z]:=(a[z*]+a[z*+]) mod p;
end;
b[z].a0:=;b[z].a1:=;
end;
function max(x,y:longint):longint;inline;
begin
if x>y then max:=x else max:=y;
end;
function min(x,y:longint):longint;inline;
begin
if x<y then min:=x else min:=y;
end;
function merge(d1,d2:vet):vet;inline;
var d3:vet;
begin
d3:=d1;
d3.a0:=d3.a0 mod p;d3.a1:=d3.a1 mod p;
d2.a0:=d2.a0 mod p;d2.a1:=d2.a1 mod p;
d3.a0:=(d3.a0*d2.a0) mod p;
d3.a1:=((d3.a1*d2.a0) mod p+d2.a1) mod p;
exit(d3);
end;
procedure ext(z,x,y:longint);inline;
begin
a[z]:=((a[z]*b[z].a0) mod p+(b[z].a1*((y-x+) mod p)) mod p) mod p;
b[z*]:=merge(b[z*],b[z]);
b[z*+]:=merge(b[z*+],b[z]);
b[z].a0:=;b[z].a1:=;
end;
function op(z,x,y,l,r:longint;d:vet):int64;inline;
var
a3,a4:int64;
begin
if l>r then exit();
ext(z,x,y);
if (x=l) and (y=r) then
begin
b[z]:=d;
exit(((a[z]*((b[z].a0-) mod p)) mod p+(b[z].a1*((r-l+) mod p)) mod p) mod p);
end
else
begin
a3:=op(z*,x,(x+y) div ,l,min(r,(x+y) div ),d);
a4:=op(z*+,(x+y) div +,y,max(l,(x+y) div +),r,d);
a[z]:=(a[z]+(a3+a4) mod p) mod p;
exit((a3+a4) mod p);
end;
end;
{function cal(z,x,y,l,r:longint;d:vet):int64;inline; //方案一
var d1:vet;
begin
if l>r then exit(0);
d1:=merge(b[z],d);
if (x=l) and (y=r) then exit(((a[z]*d1.a0) mod p+(d1.a1*((r-l+1) mod p)) mod p) mod p);
exit((cal(z*2,x,(x+y) div 2,l,min((x+y) div 2,r),d1)+cal(z*2+1,(x+y) div 2+1,y,max((x+y) div 2+1,l),r,d1)) mod p);
end; }
function cal(z,x,y,l,r:longint):int64;inline; //方案二
begin
if l>r then exit();
ext(z,x,y);
if (x=l) and (y=r) then exit(a[z]);
exit((cal(z*,x,(x+y) div ,l,min((x+y) div ,r))+cal(z*+,(x+y) div +,y,max((x+y) div +,l),r)) mod p);
end; function modd(x:int64):int64;inline;
begin
if x>= then exit(x mod p);
modd:=((abs(x) div p+)*p+x) mod p;
end; begin
readln(n,p);
for i:= to n do read(c[i]);
readln;
built(,,n);
readln(m);
for i:= to m do
begin
read(j);
case j of
:begin
readln(a2,a3,a4);
d.a0:=a4;d.a1:=;
op(,,n,a2,a3,d);
end;
:begin
readln(a2,a3,a4);
d.a0:=;d.a1:=a4;
op(,,n,a2,a3,d);
end;
:begin
readln(a2,a3);
writeln(modd(cal(,,n,a2,a3)));
end;
end;
end;
end.