ZOJ 4060 - Flippy Sequence - [思维题][2018 ACM-ICPC Asia Qingdao Regional Problem C]

时间:2021-07-25 13:58:42

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4060

ZOJ 4060 - Flippy Sequence - [思维题][2018 ACM-ICPC Asia Qingdao Regional Problem C]

ZOJ 4060 - Flippy Sequence - [思维题][2018 ACM-ICPC Asia Qingdao Regional Problem C]

题意:

给出两个 $0,1$ 字符串 $S,T$,现在你有两次对 $S$ 作区间翻转($0 \rightarrow 1,1 \rightarrow 0$)的操作,

用四元组 $(l_1,r_1,l_2,r_2)$ 表示,代表第一次翻转区间 $[l_1,r_1]$,第二次翻转区间 $[l_2,r_2]$。

问你有多少个四元组可以使得 $S=T$。

题解:

把 $S$ 尽可能少地分割成若干个子串。若某一子串和相应区间的 $T$ 一样,记作 $B$;反之,则记作 $A$。

因此若 $A$ 的数量大于两个,就不可能通过区间翻转两次使得 $S=T$,因此 $A$ 最多是两个。

分类讨论:

  1. $A$ 有 $0$ 个,即整个$S$ 可表示为 $B$,任意翻转两次相同区间 $[i,j]$ 即可。整个 $1 \sim |S|$ 可以有 $|S| + (|S|-1) + \cdots + 1 = \frac{|S|(|S|+1)}{2}$。
  2. $A$ 有 $1$ 个,即$S$ 可表示为 $(B)A(B)$。若两边都没有 $B$,则可以将 $A$ 分成两个部分 $[l,m],[m+1,r]$ 分别翻转,考虑 $m$ 取值的可能有 $2 \times (|A|-1)$ 种;若两侧都有 $B$,即 $BAB$,则应在前面那种基础上,再算上,在某一侧的 $B$ 中挑选一个左端点,再以 $A$ 的右端点为区间右端点,这样一来有 $2 \times |B|$ 种选择。两者加起来即 $2 \times (|A|-1+|B|) = 2 \times (|S|-1)$。
  3. $A$ 有 $2$ 个,即$S$ 可表示为 $(B)ABA(B)$。只能有三种翻法:①ABA,B;②AB,BA;③A,A。因此即 $2 \times 3 = 6$ 种可能性。

AC代码:

#include<bits/stdc++.h>
using namespace std;
int n;
string s,t;
int main()
{
ios::sync_with_stdio();
cin.tie();
int T;
cin>>T;
while(T--)
{
cin>>n>>s>>t;
int cnt=;
for(int i=;i<n;i++) {
if((i== || s[i-]==t[i-]) && s[i]!=t[i]) cnt++;
}
if(cnt>) cout<<"0\n";
else if(cnt==) cout<<"6\n";
else if(cnt==) cout<<(*n-)<<'\n';
else cout<<((long long)n*(n+)/)<<'\n';
}
}