[HNOI2008]越狱

时间:2022-09-12 22:15:52

题目描述

*有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱

输入输出格式

输入格式:

输入两个整数M,N.1<=M<=10^8,1<=N<=10^12

输出格式:

可能越狱的状态数,模100003取余

输入输出样例

输入样例#1:
2 3
输出样例#1:
6

说明

6种状态为(000)(001)(011)(100)(110)(111)

简单到不像省选题,原本打算用半小时,结果只用了5分钟

所有状态m^n,不符合条件的状态:

第一个有m种选择,接下来n-1个为(m-1)种,所以总数:m*(m-1)^(n-1)

ans=m^n-m*(m-1)^(n-1)

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int p=;
long long ans1,ans2;
long long qpow(long long x,long long m)
{
if (m==) return ;
long long tmp=qpow(x,m/);
tmp=(tmp*tmp)%p;
if (m%==) tmp=(tmp*x)%p;
return tmp;
}
int main()
{long long m,n;
cin>>m>>n;
ans1=qpow(m,n);
ans2=(m*qpow(m-,n-))%p;
cout<<(ans1-ans2+p)%p;
}