Python 实现 动态规划 /斐波那契数列

时间:2022-09-15 22:01:35

1、斐波那契数列

  斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(3)=2,F(n)=F(n-1)+F(n-2)(n>=4,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

  (1)、递归算法 (三点:  终止条件(边界),最优子结构 F(1)=1,F(2)=1, F(3)=2,F(n)=F(n-1)+F(n-2)  状态转移公式  F(n)=F(n-1)+F(n-2))

def fab(n):
# 终止条件 边界
if n <= 2:
return 1
else:
# 最优子结构 状态转移公式
return fab(n - 1) + fab(n - 2)

  (2)、优化  递归算法 会重复计算多次同一个式子 如图 相同的颜色代表了方法被传入相同的参数。所以需要记录下已经计算过得数,防止重复计算

Python 实现 动态规划 /斐波那契数列

# 记录已经计算过得 值
dict_fab = {} def fab_2(n):
# 终止条件 边界
if n <= 2:
return 1
elif dict_fab.get(n):
print('*')
return dict_fab.get(n)
else:
# 最优子结构 状态转移公式
dict_fab[n] = fab_2(n - 1) + fab_2(n - 2)
return dict_fab[n]

  (3)、动态规划

# 最终优化 动态规划  (大问题化成若干相同类型的子问题 然后一个个解决子问题)
def fab_3(n):
# 由前往后推
a = 1
b = 1
if n <= 2:
print('fab({})={}'.format(n, b))
return 1
for i in range(n - 2):
print(a, b)
a, b = b, a + b
print('fab({})={}'.format(n, b))
return b

2、盛水问题 Python解法(题目链接https://leetcode.com/problems/trapping-rain-water/description/

  (1)、暴力解法

  

def trap(height):
sum_water = 0
size = len(height)
for i in range(size):
max_left = 0
max_right = 0
for j in range(0, i + 1):
max_left = max(max_left, height[j])
for j in range(i, size):
max_right = max(max_right, height[j])
sum_water += min(max_left, max_right) - height[i]
return sum_water

  (2)、动态规划(记忆算法,记录i 位置的左右 最大数,减少for循环层级 时间复杂度 有o(n²)变为 o(n))

def trap_water_dy():
height = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1]
sum_water = 0
size = len(height)
max_left_lsit = [None]*size
max_left_lsit[0] = height[0]
max_right_list = [None]*size
max_right_list[-1] = height[-1] for i in range(1, size):
max_left_lsit[i] = max(height[i], max_left_lsit[i - 1]) for i in range(size-1):
max_right_list[size - 2 - i] = max(height[size - 2 - i], max_right_list[size - i - 1]) for i in range(size):
sum_water += min(max_left_lsit[i], max_right_list[i]) - height[i]
return sum_water

(3)、双指针

def trap_two_point():
height = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1]
left = 0
right = len(height) - 1
ans = 0
left_max = 0
right_max = 0
while left < right: # 循环数组一遍
if height[left] < height[right]: # 当左边的小于右边的 能装多少水 由左边的最高高度决定
if height[left] >= left_max:
left_max = height[left]
ans += (left_max - height[left])
left += 1
else: # 当右边小于左边时 装的水量由右边的最高高度决定
if height[right] >= right_max:
right_max = height[right]
ans += (right_max - height[right])
right -= 1
return ans