HDU 5730 2016多校Contest 1 G题【CDQ分治和FFT模板】

时间:2022-09-11 21:46:32

题目大意思:


求f[i] = sum(f[j] * a[i-j]) , a为题目给出。f[0]=1


然后后用CDQ分治,分治后用FFT。


要点:FFT的double精度有限……这题读入的时候要先mod再计算

第二:给kaungbin的FFT模板略加整理,更加好用一些。PS:多加一个整理函数,速度多300ms?!


#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include <cmath>
using namespace std;

const double PI = acos(-1.0);
const int maxn = 100010 * 4;
struct complex
{
	double r,i;
	complex(double _r = 0.0,double _i = 0.0)
	{
		r = _r; i = _i;
	}
	complex operator +(const complex &b)
	{
		return complex(r+b.r,i+b.i);
	}
	complex operator -(const complex &b)
	{
		return complex(r-b.r,i-b.i);
	}
	complex operator *(const complex &b)
	{
		return complex(r*b.r-i*b.i,r*b.i+i*b.r);
	}
};
/*
 * 进行FFT和IFFT前的反转变换。
 * 位置i和 (i二进制反转后位置)互换
 * len必须去2的幂
 */
void change(complex y[],int len)
{
	int i,j,k;
	for(i = 1, j = len/2;i < len-1; i++)
	{
		if(i < j)swap(y[i],y[j]);
		//交换互为小标反转的元素,i<j保证交换一次
		//i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
		k = len/2;
		while( j >= k)
		{
			j -= k;
			k /= 2;
		}
		if(j < k) j += k;
	}
}
/*
 * 做FFT
 * len必须为2^k形式,
 * on==1时是DFT,on==-1时是IDFT
 */
void fft(complex y[],int len,int on)
{
	change(y,len);
	for(int h = 2; h <= len; h <<= 1)
	{
		complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
		for(int j = 0;j < len;j+=h)
		{
			complex w(1,0);
			for(int k = j;k < j+h/2;k++)
			{
				complex u = y[k];
				complex t = w*y[k+h/2];
				y[k] = u+t;
				y[k+h/2] = u-t;
				w = w*wn;
			}
		}
	}
	if(on == -1)
		for(int i = 0;i < len;i++)
			y[i].r /= len;
}

complex x1[maxn], x2[maxn];
void getfft(int arg1[], int len1, int arg2[], int len2, int fft_out[])//模板:第一个数组,数组元素数量。 第二个数组,数组元素数量,输出数组
{
	int len = 1;
	while(len < len1*2 || len < len2*2)len<<=1;
	for(int i = 0;i < len1;i++)
		x1[i] = complex(arg1[i] , 0);
	for(int i = len1;i < len;i++)
		x1[i] = complex(0 , 0);
	for(int i = 0;i < len2;i++)
		x2[i] = complex(arg2[i] , 0);
	for(int i = len2;i < len;i++)
		x2[i] = complex(0, 0);
	fft(x1,len,1);
	fft(x2,len,1);
	for(int i = 0;i < len;i++)
		x1[i] = x1[i]*x2[i];
	fft(x1,len,-1);
	for(int i = 0;i < len;i++)
		fft_out[i] = (int)(x1[i].r+0.5);
}



int n;
const int mod = 313;
int a[maxn], f[maxn], sum[maxn];

void init()
{
	memset(f, 0, sizeof(f));
	for (int i = 1; i <= n; ++i)	
	{
		scanf("%lld", &a[i]);
		a[i] %= 313;
	}
}

void solve(int l ,int r)
{
	if (l == r)
	{
		f[l] = (f[l] + a[l]) % mod;
		//f[l]一定已经求出了
		return;
	}
	int mid = l + (r-l)/2;
	solve(l, mid);
	int len1 = mid -l + 1;
	int len2 = r - l;

	
	getfft(&f[l], len1, &a[1], len2, sum);


	for (int i = mid + 1; i <= r; ++ i)
		f[i] = (f[i] + sum[i-mid-1 + len1 -1]) % mod;
	solve(mid + 1, r);
}

void doit()
{
	solve(1, n);
	printf("%lld\n", f[n]);
}

int main()
{
	while (~scanf("%d", &n))
	{
		if (!n)	break;
		init();
		doit();
	}
	return 0;
}