=====================================================
H.264源代码分析文章列表:
【编码 - x264】
x264源代码简单分析:x264命令行工具(x264.exe)
x264源代码简单分析:x264_slice_write()
x264源代码简单分析:宏块分析(Analysis)部分-帧内宏块(Intra)
x264源代码简单分析:宏块分析(Analysis)部分-帧间宏块(Inter)
x264源代码简单分析:熵编码(Entropy Encoding)部分
【解码 - libavcodec H.264 解码器】
FFmpeg的H.264解码器源代码简单分析:解析器(Parser)部分
FFmpeg的H.264解码器源代码简单分析:熵解码(EntropyDecoding)部分
FFmpeg的H.264解码器源代码简单分析:宏块解码(Decode)部分-帧内宏块(Intra)
FFmpeg的H.264解码器源代码简单分析:宏块解码(Decode)部分-帧间宏块(Inter)
FFmpeg的H.264解码器源代码简单分析:环路滤波(Loop Filter)部分
=====================================================
本文记录x264的 x264_slice_write()函数中调用的x264_macroblock_analyse()的源代码。x264_macroblock_analyse()对应着x264中的分析模块。分析模块主要完成了下面2个方面的功能:
(1)对于帧内宏块,分析帧内预测模式
(2)对于帧间宏块,进行运动估计,分析帧间预测模式
由于分析模块比较复杂,因此分成两篇文章记录其中的源代码:本文记录帧内宏块预测模式的分析,下一篇文章记录帧间宏块预测模式的分析。
函数调用关系图
宏块分析(Analysis)部分的源代码在整个x264中的位置如下图所示。
宏块分析(Analysis)部分的函数调用关系如下图所示。
从图中可以看出,分析模块的x264_macroblock_analyse()调用了如下函数(只列举了几个有代表性的函数):
x264_mb_analyse_init():Analysis模块初始化。
x264_mb_analyse_intra():Intra宏块帧内预测模式分析。
x264_macroblock_probe_pskip():分析是否是skip模式。
x264_mb_analyse_inter_p16x16():P16x16宏块帧间预测模式分析。
x264_mb_analyse_inter_p8x8():P8x8宏块帧间预测模式分析。
x264_mb_analyse_inter_p16x8():P16x8宏块帧间预测模式分析。
x264_mb_analyse_inter_b16x16():B16x16宏块帧间预测模式分析。
x264_mb_analyse_inter_b8x8():B8x8宏块帧间预测模式分析。
x264_mb_analyse_inter_b16x8():B16x8宏块帧间预测模式分析。
本文重点分析其中帧内宏块(Intra宏块)的分析函数x264_mb_analyse_intra()。下一篇文章再对x264_mb_analyse_inter_p16x16()等一系列帧间宏块的分析函数。
x264_slice_write()
x264_slice_write()是x264项目的核心,它完成了编码了一个Slice的工作。有关该函数的分析可以参考文章《x264源代码简单分析:x264_slice_write()》。本文分析其调用的x264_mb_analyse()函数。
x264_macroblock_analyse()
x264_macroblock_analyse()用于分析宏块的预测模式。该函数的定义位于encoder\analyse.c,如下所示。
/**************************************************************************** * 分析-帧内预测模式选择、帧间运动估计等 * * 注释和处理:雷霄骅 * http://blog.csdn.net/leixiaohua1020 * leixiaohua1020@126.com ****************************************************************************/ void x264_macroblock_analyse( x264_t *h ) { x264_mb_analysis_t analysis; int i_cost = COST_MAX; //通过码率控制方法,获取本宏块QP h->mb.i_qp = x264_ratecontrol_mb_qp( h ); /* If the QP of this MB is within 1 of the previous MB, code the same QP as the previous MB, * to lower the bit cost of the qp_delta. Don't do this if QPRD is enabled. */ if( h->param.rc.i_aq_mode && h->param.analyse.i_subpel_refine < 10 ) h->mb.i_qp = abs(h->mb.i_qp - h->mb.i_last_qp) == 1 ? h->mb.i_last_qp : h->mb.i_qp; if( h->param.analyse.b_mb_info ) h->fdec->effective_qp[h->mb.i_mb_xy] = h->mb.i_qp; /* Store the real analysis QP. */ //初始化 x264_mb_analyse_init( h, &analysis, h->mb.i_qp ); /*--------------------------- Do the analysis ---------------------------*/ //I帧:只使用帧内预测,分别计算亮度16x16(4种)和4x4(9种)所有模式的代价值,选出代价最小的模式 //P帧:计算帧内模式和帧间模式( P Slice允许有Intra宏块和P宏块;同理B帧也支持Intra宏块)。 //对P帧的每一种分割进行帧间预测,得到最佳的运动矢量及最佳匹配块。 //帧间预测过程:选出最佳矢量——>找到最佳的整像素点——>找到最佳的二分之一像素点——>找到最佳的1/4像素点 //然后取代价最小的为最佳MV和分割方式 //最后从帧内模式和帧间模式中选择代价比较小的方式(有可能没有找到很好的匹配块,这时候就直接使用帧内预测而不是帧间预测)。 if( h->sh.i_type == SLICE_TYPE_I ) { //I slice //通过一系列帧内预测模式(16x16的4种,4x4的9种)代价的计算得出代价最小的最优模式 intra_analysis: if( analysis.i_mbrd ) x264_mb_init_fenc_cache( h, analysis.i_mbrd >= 2 ); //帧内预测分析 //从16×16的SAD,4个8×8的SAD和,16个4×4SAD中选出最优方式 x264_mb_analyse_intra( h, &analysis, COST_MAX ); if( analysis.i_mbrd ) x264_intra_rd( h, &analysis, COST_MAX ); //分析结果都存储在analysis结构体中 //开销 i_cost = analysis.i_satd_i16x16; h->mb.i_type = I_16x16; //如果I4x4或者I8x8开销更小的话就拷贝 //copy if little COPY2_IF_LT( i_cost, analysis.i_satd_i4x4, h->mb.i_type, I_4x4 ); COPY2_IF_LT( i_cost, analysis.i_satd_i8x8, h->mb.i_type, I_8x8 ); //画面极其特殊的时候,才有可能用到PCM if( analysis.i_satd_pcm < i_cost ) h->mb.i_type = I_PCM; else if( analysis.i_mbrd >= 2 ) x264_intra_rd_refine( h, &analysis ); } else if( h->sh.i_type == SLICE_TYPE_P ) { //P slice int b_skip = 0; h->mc.prefetch_ref( h->mb.pic.p_fref[0][0][h->mb.i_mb_x&3], h->mb.pic.i_stride[0], 0 ); analysis.b_try_skip = 0; if( analysis.b_force_intra ) { if( !h->param.analyse.b_psy ) { x264_mb_analyse_init_qp( h, &analysis, X264_MAX( h->mb.i_qp - h->mb.ip_offset, h->param.rc.i_qp_min ) ); goto intra_analysis; } } else { /* Special fast-skip logic using information from mb_info. */ if( h->fdec->mb_info && (h->fdec->mb_info[h->mb.i_mb_xy]&X264_MBINFO_CONSTANT) ) { if( !SLICE_MBAFF && (h->fdec->i_frame - h->fref[0][0]->i_frame) == 1 && !h->sh.b_weighted_pred && h->fref[0][0]->effective_qp[h->mb.i_mb_xy] <= h->mb.i_qp ) { h->mb.i_partition = D_16x16; /* Use the P-SKIP MV if we can... */ if( !M32(h->mb.cache.pskip_mv) ) { b_skip = 1; h->mb.i_type = P_SKIP; } /* Otherwise, just force a 16x16 block. */ else { h->mb.i_type = P_L0; analysis.l0.me16x16.i_ref = 0; M32( analysis.l0.me16x16.mv ) = 0; } goto skip_analysis; } /* Reset the information accordingly */ else if( h->param.analyse.b_mb_info_update ) h->fdec->mb_info[h->mb.i_mb_xy] &= ~X264_MBINFO_CONSTANT; } int skip_invalid = h->i_thread_frames > 1 && h->mb.cache.pskip_mv[1] > h->mb.mv_max_spel[1]; /* If the current macroblock is off the frame, just skip it. */ if( HAVE_INTERLACED && !MB_INTERLACED && h->mb.i_mb_y * 16 >= h->param.i_height && !skip_invalid ) b_skip = 1; /* Fast P_SKIP detection */ else if( h->param.analyse.b_fast_pskip ) { if( skip_invalid ) // FIXME don't need to check this if the reference frame is done {} else if( h->param.analyse.i_subpel_refine >= 3 ) analysis.b_try_skip = 1; else if( h->mb.i_mb_type_left[0] == P_SKIP || h->mb.i_mb_type_top == P_SKIP || h->mb.i_mb_type_topleft == P_SKIP || h->mb.i_mb_type_topright == P_SKIP ) b_skip = x264_macroblock_probe_pskip( h );//检查是否是Skip类型 } } h->mc.prefetch_ref( h->mb.pic.p_fref[0][0][h->mb.i_mb_x&3], h->mb.pic.i_stride[0], 1 ); if( b_skip ) { h->mb.i_type = P_SKIP; h->mb.i_partition = D_16x16; assert( h->mb.cache.pskip_mv[1] <= h->mb.mv_max_spel[1] || h->i_thread_frames == 1 ); skip_analysis: /* Set up MVs for future predictors */ for( int i = 0; i < h->mb.pic.i_fref[0]; i++ ) M32( h->mb.mvr[0][i][h->mb.i_mb_xy] ) = 0; } else { const unsigned int flags = h->param.analyse.inter; int i_type; int i_partition; int i_satd_inter, i_satd_intra; x264_mb_analyse_load_costs( h, &analysis ); /* * 16x16 帧间预测宏块分析-P * * +--------+--------+ * | | * | | * | | * + + + * | | * | | * | | * +--------+--------+ * */ x264_mb_analyse_inter_p16x16( h, &analysis ); if( h->mb.i_type == P_SKIP ) { for( int i = 1; i < h->mb.pic.i_fref[0]; i++ ) M32( h->mb.mvr[0][i][h->mb.i_mb_xy] ) = 0; return; } if( flags & X264_ANALYSE_PSUB16x16 ) { if( h->param.analyse.b_mixed_references ) x264_mb_analyse_inter_p8x8_mixed_ref( h, &analysis ); else{ /* * 8x8帧间预测宏块分析-P * +--------+ * | | * | | * | | * +--------+ */ x264_mb_analyse_inter_p8x8( h, &analysis ); } } /* Select best inter mode */ i_type = P_L0; i_partition = D_16x16; i_cost = analysis.l0.me16x16.cost; //如果8x8的代价值小于16x16 //则进行8x8子块分割的处理 //处理的数据源自于l0 if( ( flags & X264_ANALYSE_PSUB16x16 ) && (!analysis.b_early_terminate || analysis.l0.i_cost8x8 < analysis.l0.me16x16.cost) ) { i_type = P_8x8; i_partition = D_8x8; i_cost = analysis.l0.i_cost8x8; /* Do sub 8x8 */ if( flags & X264_ANALYSE_PSUB8x8 ) { for( int i = 0; i < 4; i++ ) { //8x8块的子块的分析 /* * 4x4 * +----+----+ * | | | * +----+----+ * | | | * +----+----+ * */ x264_mb_analyse_inter_p4x4( h, &analysis, i ); int i_thresh8x4 = analysis.l0.me4x4[i][1].cost_mv + analysis.l0.me4x4[i][2].cost_mv; //如果4x4小于8x8 //则再分析8x4,4x8的代价 if( !analysis.b_early_terminate || analysis.l0.i_cost4x4[i] < analysis.l0.me8x8[i].cost + i_thresh8x4 ) { int i_cost8x8 = analysis.l0.i_cost4x4[i]; h->mb.i_sub_partition[i] = D_L0_4x4; /* * 8x4 * +----+----+ * | | * +----+----+ * | | * +----+----+ * */ //如果8x4小于8x8 x264_mb_analyse_inter_p8x4( h, &analysis, i ); COPY2_IF_LT( i_cost8x8, analysis.l0.i_cost8x4[i], h->mb.i_sub_partition[i], D_L0_8x4 ); /* * 4x8 * +----+----+ * | | | * + + + * | | | * +----+----+ * */ //如果4x8小于8x8 x264_mb_analyse_inter_p4x8( h, &analysis, i ); COPY2_IF_LT( i_cost8x8, analysis.l0.i_cost4x8[i], h->mb.i_sub_partition[i], D_L0_4x8 ); i_cost += i_cost8x8 - analysis.l0.me8x8[i].cost; } x264_mb_cache_mv_p8x8( h, &analysis, i ); } analysis.l0.i_cost8x8 = i_cost; } } /* Now do 16x8/8x16 */ int i_thresh16x8 = analysis.l0.me8x8[1].cost_mv + analysis.l0.me8x8[2].cost_mv; //前提要求8x8的代价值小于16x16 if( ( flags & X264_ANALYSE_PSUB16x16 ) && (!analysis.b_early_terminate || analysis.l0.i_cost8x8 < analysis.l0.me16x16.cost + i_thresh16x8) ) { int i_avg_mv_ref_cost = (analysis.l0.me8x8[2].cost_mv + analysis.l0.me8x8[2].i_ref_cost + analysis.l0.me8x8[3].cost_mv + analysis.l0.me8x8[3].i_ref_cost + 1) >> 1; analysis.i_cost_est16x8[1] = analysis.i_satd8x8[0][2] + analysis.i_satd8x8[0][3] + i_avg_mv_ref_cost; /* * 16x8 宏块划分 * * +--------+--------+ * | | | * | | | * | | | * +--------+--------+ * */ x264_mb_analyse_inter_p16x8( h, &analysis, i_cost ); COPY3_IF_LT( i_cost, analysis.l0.i_cost16x8, i_type, P_L0, i_partition, D_16x8 ); i_avg_mv_ref_cost = (analysis.l0.me8x8[1].cost_mv + analysis.l0.me8x8[1].i_ref_cost + analysis.l0.me8x8[3].cost_mv + analysis.l0.me8x8[3].i_ref_cost + 1) >> 1; analysis.i_cost_est8x16[1] = analysis.i_satd8x8[0][1] + analysis.i_satd8x8[0][3] + i_avg_mv_ref_cost; /* * 8x16 宏块划分 * * +--------+ * | | * | | * | | * +--------+ * | | * | | * | | * +--------+ * */ x264_mb_analyse_inter_p8x16( h, &analysis, i_cost ); COPY3_IF_LT( i_cost, analysis.l0.i_cost8x16, i_type, P_L0, i_partition, D_8x16 ); } h->mb.i_partition = i_partition; /* refine qpel */ //亚像素精度搜索 //FIXME mb_type costs? if( analysis.i_mbrd || !h->mb.i_subpel_refine ) { /* refine later */ } else if( i_partition == D_16x16 ) { x264_me_refine_qpel( h, &analysis.l0.me16x16 ); i_cost = analysis.l0.me16x16.cost; } else if( i_partition == D_16x8 ) { x264_me_refine_qpel( h, &analysis.l0.me16x8[0] ); x264_me_refine_qpel( h, &analysis.l0.me16x8[1] ); i_cost = analysis.l0.me16x8[0].cost + analysis.l0.me16x8[1].cost; } else if( i_partition == D_8x16 ) { x264_me_refine_qpel( h, &analysis.l0.me8x16[0] ); x264_me_refine_qpel( h, &analysis.l0.me8x16[1] ); i_cost = analysis.l0.me8x16[0].cost + analysis.l0.me8x16[1].cost; } else if( i_partition == D_8x8 ) { i_cost = 0; for( int i8x8 = 0; i8x8 < 4; i8x8++ ) { switch( h->mb.i_sub_partition[i8x8] ) { case D_L0_8x8: x264_me_refine_qpel( h, &analysis.l0.me8x8[i8x8] ); i_cost += analysis.l0.me8x8[i8x8].cost; break; case D_L0_8x4: x264_me_refine_qpel( h, &analysis.l0.me8x4[i8x8][0] ); x264_me_refine_qpel( h, &analysis.l0.me8x4[i8x8][1] ); i_cost += analysis.l0.me8x4[i8x8][0].cost + analysis.l0.me8x4[i8x8][1].cost; break; case D_L0_4x8: x264_me_refine_qpel( h, &analysis.l0.me4x8[i8x8][0] ); x264_me_refine_qpel( h, &analysis.l0.me4x8[i8x8][1] ); i_cost += analysis.l0.me4x8[i8x8][0].cost + analysis.l0.me4x8[i8x8][1].cost; break; case D_L0_4x4: x264_me_refine_qpel( h, &analysis.l0.me4x4[i8x8][0] ); x264_me_refine_qpel( h, &analysis.l0.me4x4[i8x8][1] ); x264_me_refine_qpel( h, &analysis.l0.me4x4[i8x8][2] ); x264_me_refine_qpel( h, &analysis.l0.me4x4[i8x8][3] ); i_cost += analysis.l0.me4x4[i8x8][0].cost + analysis.l0.me4x4[i8x8][1].cost + analysis.l0.me4x4[i8x8][2].cost + analysis.l0.me4x4[i8x8][3].cost; break; default: x264_log( h, X264_LOG_ERROR, "internal error (!8x8 && !4x4)\n" ); break; } } } if( h->mb.b_chroma_me ) { if( CHROMA444 ) { x264_mb_analyse_intra( h, &analysis, i_cost ); x264_mb_analyse_intra_chroma( h, &analysis ); } else { x264_mb_analyse_intra_chroma( h, &analysis ); x264_mb_analyse_intra( h, &analysis, i_cost - analysis.i_satd_chroma ); } analysis.i_satd_i16x16 += analysis.i_satd_chroma; analysis.i_satd_i8x8 += analysis.i_satd_chroma; analysis.i_satd_i4x4 += analysis.i_satd_chroma; } else x264_mb_analyse_intra( h, &analysis, i_cost );//P Slice中也允许有Intra宏块,所以也要进行分析 i_satd_inter = i_cost; i_satd_intra = X264_MIN3( analysis.i_satd_i16x16, analysis.i_satd_i8x8, analysis.i_satd_i4x4 ); if( analysis.i_mbrd ) { x264_mb_analyse_p_rd( h, &analysis, X264_MIN(i_satd_inter, i_satd_intra) ); i_type = P_L0; i_partition = D_16x16; i_cost = analysis.l0.i_rd16x16; COPY2_IF_LT( i_cost, analysis.l0.i_cost16x8, i_partition, D_16x8 ); COPY2_IF_LT( i_cost, analysis.l0.i_cost8x16, i_partition, D_8x16 ); COPY3_IF_LT( i_cost, analysis.l0.i_cost8x8, i_partition, D_8x8, i_type, P_8x8 ); h->mb.i_type = i_type; h->mb.i_partition = i_partition; if( i_cost < COST_MAX ) x264_mb_analyse_transform_rd( h, &analysis, &i_satd_inter, &i_cost ); x264_intra_rd( h, &analysis, i_satd_inter * 5/4 + 1 ); } //获取最小的代价 COPY2_IF_LT( i_cost, analysis.i_satd_i16x16, i_type, I_16x16 ); COPY2_IF_LT( i_cost, analysis.i_satd_i8x8, i_type, I_8x8 ); COPY2_IF_LT( i_cost, analysis.i_satd_i4x4, i_type, I_4x4 ); COPY2_IF_LT( i_cost, analysis.i_satd_pcm, i_type, I_PCM ); h->mb.i_type = i_type; if( analysis.b_force_intra && !IS_INTRA(i_type) ) { /* Intra masking: copy fdec to fenc and re-encode the block as intra in order to make it appear as if * it was an inter block. */ x264_analyse_update_cache( h, &analysis ); x264_macroblock_encode( h ); for( int p = 0; p < (CHROMA444 ? 3 : 1); p++ ) h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fenc[p], FENC_STRIDE, h->mb.pic.p_fdec[p], FDEC_STRIDE, 16 ); if( !CHROMA444 ) { int height = 16 >> CHROMA_V_SHIFT; h->mc.copy[PIXEL_8x8] ( h->mb.pic.p_fenc[1], FENC_STRIDE, h->mb.pic.p_fdec[1], FDEC_STRIDE, height ); h->mc.copy[PIXEL_8x8] ( h->mb.pic.p_fenc[2], FENC_STRIDE, h->mb.pic.p_fdec[2], FDEC_STRIDE, height ); } x264_mb_analyse_init_qp( h, &analysis, X264_MAX( h->mb.i_qp - h->mb.ip_offset, h->param.rc.i_qp_min ) ); goto intra_analysis; } if( analysis.i_mbrd >= 2 && h->mb.i_type != I_PCM ) { if( IS_INTRA( h->mb.i_type ) ) { x264_intra_rd_refine( h, &analysis ); } else if( i_partition == D_16x16 ) { x264_macroblock_cache_ref( h, 0, 0, 4, 4, 0, analysis.l0.me16x16.i_ref ); analysis.l0.me16x16.cost = i_cost; x264_me_refine_qpel_rd( h, &analysis.l0.me16x16, analysis.i_lambda2, 0, 0 ); } else if( i_partition == D_16x8 ) { h->mb.i_sub_partition[0] = h->mb.i_sub_partition[1] = h->mb.i_sub_partition[2] = h->mb.i_sub_partition[3] = D_L0_8x8; x264_macroblock_cache_ref( h, 0, 0, 4, 2, 0, analysis.l0.me16x8[0].i_ref ); x264_macroblock_cache_ref( h, 0, 2, 4, 2, 0, analysis.l0.me16x8[1].i_ref ); x264_me_refine_qpel_rd( h, &analysis.l0.me16x8[0], analysis.i_lambda2, 0, 0 ); x264_me_refine_qpel_rd( h, &analysis.l0.me16x8[1], analysis.i_lambda2, 8, 0 ); } else if( i_partition == D_8x16 ) { h->mb.i_sub_partition[0] = h->mb.i_sub_partition[1] = h->mb.i_sub_partition[2] = h->mb.i_sub_partition[3] = D_L0_8x8; x264_macroblock_cache_ref( h, 0, 0, 2, 4, 0, analysis.l0.me8x16[0].i_ref ); x264_macroblock_cache_ref( h, 2, 0, 2, 4, 0, analysis.l0.me8x16[1].i_ref ); x264_me_refine_qpel_rd( h, &analysis.l0.me8x16[0], analysis.i_lambda2, 0, 0 ); x264_me_refine_qpel_rd( h, &analysis.l0.me8x16[1], analysis.i_lambda2, 4, 0 ); } else if( i_partition == D_8x8 ) { x264_analyse_update_cache( h, &analysis ); for( int i8x8 = 0; i8x8 < 4; i8x8++ ) { if( h->mb.i_sub_partition[i8x8] == D_L0_8x8 ) { x264_me_refine_qpel_rd( h, &analysis.l0.me8x8[i8x8], analysis.i_lambda2, i8x8*4, 0 ); } else if( h->mb.i_sub_partition[i8x8] == D_L0_8x4 ) { x264_me_refine_qpel_rd( h, &analysis.l0.me8x4[i8x8][0], analysis.i_lambda2, i8x8*4+0, 0 ); x264_me_refine_qpel_rd( h, &analysis.l0.me8x4[i8x8][1], analysis.i_lambda2, i8x8*4+2, 0 ); } else if( h->mb.i_sub_partition[i8x8] == D_L0_4x8 ) { x264_me_refine_qpel_rd( h, &analysis.l0.me4x8[i8x8][0], analysis.i_lambda2, i8x8*4+0, 0 ); x264_me_refine_qpel_rd( h, &analysis.l0.me4x8[i8x8][1], analysis.i_lambda2, i8x8*4+1, 0 ); } else if( h->mb.i_sub_partition[i8x8] == D_L0_4x4 ) { x264_me_refine_qpel_rd( h, &analysis.l0.me4x4[i8x8][0], analysis.i_lambda2, i8x8*4+0, 0 ); x264_me_refine_qpel_rd( h, &analysis.l0.me4x4[i8x8][1], analysis.i_lambda2, i8x8*4+1, 0 ); x264_me_refine_qpel_rd( h, &analysis.l0.me4x4[i8x8][2], analysis.i_lambda2, i8x8*4+2, 0 ); x264_me_refine_qpel_rd( h, &analysis.l0.me4x4[i8x8][3], analysis.i_lambda2, i8x8*4+3, 0 ); } } } } } } else if( h->sh.i_type == SLICE_TYPE_B )//B Slice的时候 { int i_bskip_cost = COST_MAX; int b_skip = 0; if( analysis.i_mbrd ) x264_mb_init_fenc_cache( h, analysis.i_mbrd >= 2 ); h->mb.i_type = B_SKIP; if( h->mb.b_direct_auto_write ) { /* direct=auto heuristic: prefer whichever mode allows more Skip macroblocks */ for( int i = 0; i < 2; i++ ) { int b_changed = 1; h->sh.b_direct_spatial_mv_pred ^= 1; analysis.b_direct_available = x264_mb_predict_mv_direct16x16( h, i && analysis.b_direct_available ? &b_changed : NULL ); if( analysis.b_direct_available ) { if( b_changed ) { x264_mb_mc( h ); b_skip = x264_macroblock_probe_bskip( h ); } h->stat.frame.i_direct_score[ h->sh.b_direct_spatial_mv_pred ] += b_skip; } else b_skip = 0; } } else analysis.b_direct_available = x264_mb_predict_mv_direct16x16( h, NULL ); analysis.b_try_skip = 0; if( analysis.b_direct_available ) { if( !h->mb.b_direct_auto_write ) x264_mb_mc( h ); /* If the current macroblock is off the frame, just skip it. */ if( HAVE_INTERLACED && !MB_INTERLACED && h->mb.i_mb_y * 16 >= h->param.i_height ) b_skip = 1; else if( analysis.i_mbrd ) { i_bskip_cost = ssd_mb( h ); /* 6 = minimum cavlc cost of a non-skipped MB */ b_skip = h->mb.b_skip_mc = i_bskip_cost <= ((6 * analysis.i_lambda2 + 128) >> 8); } else if( !h->mb.b_direct_auto_write ) { /* Conditioning the probe on neighboring block types * doesn't seem to help speed or quality. */ analysis.b_try_skip = x264_macroblock_probe_bskip( h ); if( h->param.analyse.i_subpel_refine < 3 ) b_skip = analysis.b_try_skip; } /* Set up MVs for future predictors */ if( b_skip ) { for( int i = 0; i < h->mb.pic.i_fref[0]; i++ ) M32( h->mb.mvr[0][i][h->mb.i_mb_xy] ) = 0; for( int i = 0; i < h->mb.pic.i_fref[1]; i++ ) M32( h->mb.mvr[1][i][h->mb.i_mb_xy] ) = 0; } } if( !b_skip ) { const unsigned int flags = h->param.analyse.inter; int i_type; int i_partition; int i_satd_inter; h->mb.b_skip_mc = 0; h->mb.i_type = B_DIRECT; x264_mb_analyse_load_costs( h, &analysis ); /* select best inter mode */ /* direct must be first */ if( analysis.b_direct_available ) x264_mb_analyse_inter_direct( h, &analysis ); /* * 16x16 帧间预测宏块分析-B * * +--------+--------+ * | | * | | * | | * + + + * | | * | | * | | * +--------+--------+ * */ x264_mb_analyse_inter_b16x16( h, &analysis ); if( h->mb.i_type == B_SKIP ) { for( int i = 1; i < h->mb.pic.i_fref[0]; i++ ) M32( h->mb.mvr[0][i][h->mb.i_mb_xy] ) = 0; for( int i = 1; i < h->mb.pic.i_fref[1]; i++ ) M32( h->mb.mvr[1][i][h->mb.i_mb_xy] ) = 0; return; } i_type = B_L0_L0; i_partition = D_16x16; i_cost = analysis.l0.me16x16.cost; COPY2_IF_LT( i_cost, analysis.l1.me16x16.cost, i_type, B_L1_L1 ); COPY2_IF_LT( i_cost, analysis.i_cost16x16bi, i_type, B_BI_BI ); COPY2_IF_LT( i_cost, analysis.i_cost16x16direct, i_type, B_DIRECT ); if( analysis.i_mbrd && analysis.b_early_terminate && analysis.i_cost16x16direct <= i_cost * 33/32 ) { x264_mb_analyse_b_rd( h, &analysis, i_cost ); if( i_bskip_cost < analysis.i_rd16x16direct && i_bskip_cost < analysis.i_rd16x16bi && i_bskip_cost < analysis.l0.i_rd16x16 && i_bskip_cost < analysis.l1.i_rd16x16 ) { h->mb.i_type = B_SKIP; x264_analyse_update_cache( h, &analysis ); return; } } if( flags & X264_ANALYSE_BSUB16x16 ) { /* * 8x8 帧间预测宏块分析-B * +--------+ * | | * | | * | | * +--------+ * */ if( h->param.analyse.b_mixed_references ) x264_mb_analyse_inter_b8x8_mixed_ref( h, &analysis ); else x264_mb_analyse_inter_b8x8( h, &analysis ); COPY3_IF_LT( i_cost, analysis.i_cost8x8bi, i_type, B_8x8, i_partition, D_8x8 ); /* Try to estimate the cost of b16x8/b8x16 based on the satd scores of the b8x8 modes */ int i_cost_est16x8bi_total = 0, i_cost_est8x16bi_total = 0; int i_mb_type, i_partition16x8[2], i_partition8x16[2]; for( int i = 0; i < 2; i++ ) { int avg_l0_mv_ref_cost, avg_l1_mv_ref_cost; int i_l0_satd, i_l1_satd, i_bi_satd, i_best_cost; // 16x8 i_best_cost = COST_MAX; i_l0_satd = analysis.i_satd8x8[0][i*2] + analysis.i_satd8x8[0][i*2+1]; i_l1_satd = analysis.i_satd8x8[1][i*2] + analysis.i_satd8x8[1][i*2+1]; i_bi_satd = analysis.i_satd8x8[2][i*2] + analysis.i_satd8x8[2][i*2+1]; avg_l0_mv_ref_cost = ( analysis.l0.me8x8[i*2].cost_mv + analysis.l0.me8x8[i*2].i_ref_cost + analysis.l0.me8x8[i*2+1].cost_mv + analysis.l0.me8x8[i*2+1].i_ref_cost + 1 ) >> 1; avg_l1_mv_ref_cost = ( analysis.l1.me8x8[i*2].cost_mv + analysis.l1.me8x8[i*2].i_ref_cost + analysis.l1.me8x8[i*2+1].cost_mv + analysis.l1.me8x8[i*2+1].i_ref_cost + 1 ) >> 1; COPY2_IF_LT( i_best_cost, i_l0_satd + avg_l0_mv_ref_cost, i_partition16x8[i], D_L0_8x8 ); COPY2_IF_LT( i_best_cost, i_l1_satd + avg_l1_mv_ref_cost, i_partition16x8[i], D_L1_8x8 ); COPY2_IF_LT( i_best_cost, i_bi_satd + avg_l0_mv_ref_cost + avg_l1_mv_ref_cost, i_partition16x8[i], D_BI_8x8 ); analysis.i_cost_est16x8[i] = i_best_cost; // 8x16 i_best_cost = COST_MAX; i_l0_satd = analysis.i_satd8x8[0][i] + analysis.i_satd8x8[0][i+2]; i_l1_satd = analysis.i_satd8x8[1][i] + analysis.i_satd8x8[1][i+2]; i_bi_satd = analysis.i_satd8x8[2][i] + analysis.i_satd8x8[2][i+2]; avg_l0_mv_ref_cost = ( analysis.l0.me8x8[i].cost_mv + analysis.l0.me8x8[i].i_ref_cost + analysis.l0.me8x8[i+2].cost_mv + analysis.l0.me8x8[i+2].i_ref_cost + 1 ) >> 1; avg_l1_mv_ref_cost = ( analysis.l1.me8x8[i].cost_mv + analysis.l1.me8x8[i].i_ref_cost + analysis.l1.me8x8[i+2].cost_mv + analysis.l1.me8x8[i+2].i_ref_cost + 1 ) >> 1; COPY2_IF_LT( i_best_cost, i_l0_satd + avg_l0_mv_ref_cost, i_partition8x16[i], D_L0_8x8 ); COPY2_IF_LT( i_best_cost, i_l1_satd + avg_l1_mv_ref_cost, i_partition8x16[i], D_L1_8x8 ); COPY2_IF_LT( i_best_cost, i_bi_satd + avg_l0_mv_ref_cost + avg_l1_mv_ref_cost, i_partition8x16[i], D_BI_8x8 ); analysis.i_cost_est8x16[i] = i_best_cost; } i_mb_type = B_L0_L0 + (i_partition16x8[0]>>2) * 3 + (i_partition16x8[1]>>2); analysis.i_cost_est16x8[1] += analysis.i_lambda * i_mb_b16x8_cost_table[i_mb_type]; i_cost_est16x8bi_total = analysis.i_cost_est16x8[0] + analysis.i_cost_est16x8[1]; i_mb_type = B_L0_L0 + (i_partition8x16[0]>>2) * 3 + (i_partition8x16[1]>>2); analysis.i_cost_est8x16[1] += analysis.i_lambda * i_mb_b16x8_cost_table[i_mb_type]; i_cost_est8x16bi_total = analysis.i_cost_est8x16[0] + analysis.i_cost_est8x16[1]; /* We can gain a little speed by checking the mode with the lowest estimated cost first */ int try_16x8_first = i_cost_est16x8bi_total < i_cost_est8x16bi_total; if( try_16x8_first && (!analysis.b_early_terminate || i_cost_est16x8bi_total < i_cost) ) { x264_mb_analyse_inter_b16x8( h, &analysis, i_cost ); COPY3_IF_LT( i_cost, analysis.i_cost16x8bi, i_type, analysis.i_mb_type16x8, i_partition, D_16x8 ); } if( !analysis.b_early_terminate || i_cost_est8x16bi_total < i_cost ) { x264_mb_analyse_inter_b8x16( h, &analysis, i_cost ); COPY3_IF_LT( i_cost, analysis.i_cost8x16bi, i_type, analysis.i_mb_type8x16, i_partition, D_8x16 ); } if( !try_16x8_first && (!analysis.b_early_terminate || i_cost_est16x8bi_total < i_cost) ) { x264_mb_analyse_inter_b16x8( h, &analysis, i_cost ); COPY3_IF_LT( i_cost, analysis.i_cost16x8bi, i_type, analysis.i_mb_type16x8, i_partition, D_16x8 ); } } if( analysis.i_mbrd || !h->mb.i_subpel_refine ) { /* refine later */ } /* refine qpel */ else if( i_partition == D_16x16 ) { analysis.l0.me16x16.cost -= analysis.i_lambda * i_mb_b_cost_table[B_L0_L0]; analysis.l1.me16x16.cost -= analysis.i_lambda * i_mb_b_cost_table[B_L1_L1]; if( i_type == B_L0_L0 ) { x264_me_refine_qpel( h, &analysis.l0.me16x16 ); i_cost = analysis.l0.me16x16.cost + analysis.i_lambda * i_mb_b_cost_table[B_L0_L0]; } else if( i_type == B_L1_L1 ) { x264_me_refine_qpel( h, &analysis.l1.me16x16 ); i_cost = analysis.l1.me16x16.cost + analysis.i_lambda * i_mb_b_cost_table[B_L1_L1]; } else if( i_type == B_BI_BI ) { x264_me_refine_qpel( h, &analysis.l0.bi16x16 ); x264_me_refine_qpel( h, &analysis.l1.bi16x16 ); } } else if( i_partition == D_16x8 ) { for( int i = 0; i < 2; i++ ) { if( analysis.i_mb_partition16x8[i] != D_L1_8x8 ) x264_me_refine_qpel( h, &analysis.l0.me16x8[i] ); if( analysis.i_mb_partition16x8[i] != D_L0_8x8 ) x264_me_refine_qpel( h, &analysis.l1.me16x8[i] ); } } else if( i_partition == D_8x16 ) { for( int i = 0; i < 2; i++ ) { if( analysis.i_mb_partition8x16[i] != D_L1_8x8 ) x264_me_refine_qpel( h, &analysis.l0.me8x16[i] ); if( analysis.i_mb_partition8x16[i] != D_L0_8x8 ) x264_me_refine_qpel( h, &analysis.l1.me8x16[i] ); } } else if( i_partition == D_8x8 ) { for( int i = 0; i < 4; i++ ) { x264_me_t *m; int i_part_cost_old; int i_type_cost; int i_part_type = h->mb.i_sub_partition[i]; int b_bidir = (i_part_type == D_BI_8x8); if( i_part_type == D_DIRECT_8x8 ) continue; if( x264_mb_partition_listX_table[0][i_part_type] ) { m = &analysis.l0.me8x8[i]; i_part_cost_old = m->cost; i_type_cost = analysis.i_lambda * i_sub_mb_b_cost_table[D_L0_8x8]; m->cost -= i_type_cost; x264_me_refine_qpel( h, m ); if( !b_bidir ) analysis.i_cost8x8bi += m->cost + i_type_cost - i_part_cost_old; } if( x264_mb_partition_listX_table[1][i_part_type] ) { m = &analysis.l1.me8x8[i]; i_part_cost_old = m->cost; i_type_cost = analysis.i_lambda * i_sub_mb_b_cost_table[D_L1_8x8]; m->cost -= i_type_cost; x264_me_refine_qpel( h, m ); if( !b_bidir ) analysis.i_cost8x8bi += m->cost + i_type_cost - i_part_cost_old; } /* TODO: update mvp? */ } } i_satd_inter = i_cost; if( analysis.i_mbrd ) { x264_mb_analyse_b_rd( h, &analysis, i_satd_inter ); i_type = B_SKIP; i_cost = i_bskip_cost; i_partition = D_16x16; COPY2_IF_LT( i_cost, analysis.l0.i_rd16x16, i_type, B_L0_L0 ); COPY2_IF_LT( i_cost, analysis.l1.i_rd16x16, i_type, B_L1_L1 ); COPY2_IF_LT( i_cost, analysis.i_rd16x16bi, i_type, B_BI_BI ); COPY2_IF_LT( i_cost, analysis.i_rd16x16direct, i_type, B_DIRECT ); COPY3_IF_LT( i_cost, analysis.i_rd16x8bi, i_type, analysis.i_mb_type16x8, i_partition, D_16x8 ); COPY3_IF_LT( i_cost, analysis.i_rd8x16bi, i_type, analysis.i_mb_type8x16, i_partition, D_8x16 ); COPY3_IF_LT( i_cost, analysis.i_rd8x8bi, i_type, B_8x8, i_partition, D_8x8 ); h->mb.i_type = i_type; h->mb.i_partition = i_partition; } if( h->mb.b_chroma_me ) { if( CHROMA444 ) { x264_mb_analyse_intra( h, &analysis, i_satd_inter ); x264_mb_analyse_intra_chroma( h, &analysis ); } else { x264_mb_analyse_intra_chroma( h, &analysis ); x264_mb_analyse_intra( h, &analysis, i_satd_inter - analysis.i_satd_chroma ); } analysis.i_satd_i16x16 += analysis.i_satd_chroma; analysis.i_satd_i8x8 += analysis.i_satd_chroma; analysis.i_satd_i4x4 += analysis.i_satd_chroma; } else x264_mb_analyse_intra( h, &analysis, i_satd_inter ); if( analysis.i_mbrd ) { x264_mb_analyse_transform_rd( h, &analysis, &i_satd_inter, &i_cost ); x264_intra_rd( h, &analysis, i_satd_inter * 17/16 + 1 ); } COPY2_IF_LT( i_cost, analysis.i_satd_i16x16, i_type, I_16x16 ); COPY2_IF_LT( i_cost, analysis.i_satd_i8x8, i_type, I_8x8 ); COPY2_IF_LT( i_cost, analysis.i_satd_i4x4, i_type, I_4x4 ); COPY2_IF_LT( i_cost, analysis.i_satd_pcm, i_type, I_PCM ); h->mb.i_type = i_type; h->mb.i_partition = i_partition; if( analysis.i_mbrd >= 2 && IS_INTRA( i_type ) && i_type != I_PCM ) x264_intra_rd_refine( h, &analysis ); if( h->mb.i_subpel_refine >= 5 ) x264_refine_bidir( h, &analysis ); if( analysis.i_mbrd >= 2 && i_type > B_DIRECT && i_type < B_SKIP ) { int i_biweight; x264_analyse_update_cache( h, &analysis ); if( i_partition == D_16x16 ) { if( i_type == B_L0_L0 ) { analysis.l0.me16x16.cost = i_cost; x264_me_refine_qpel_rd( h, &analysis.l0.me16x16, analysis.i_lambda2, 0, 0 ); } else if( i_type == B_L1_L1 ) { analysis.l1.me16x16.cost = i_cost; x264_me_refine_qpel_rd( h, &analysis.l1.me16x16, analysis.i_lambda2, 0, 1 ); } else if( i_type == B_BI_BI ) { i_biweight = h->mb.bipred_weight[analysis.l0.bi16x16.i_ref][analysis.l1.bi16x16.i_ref]; x264_me_refine_bidir_rd( h, &analysis.l0.bi16x16, &analysis.l1.bi16x16, i_biweight, 0, analysis.i_lambda2 ); } } else if( i_partition == D_16x8 ) { for( int i = 0; i < 2; i++ ) { h->mb.i_sub_partition[i*2] = h->mb.i_sub_partition[i*2+1] = analysis.i_mb_partition16x8[i]; if( analysis.i_mb_partition16x8[i] == D_L0_8x8 ) x264_me_refine_qpel_rd( h, &analysis.l0.me16x8[i], analysis.i_lambda2, i*8, 0 ); else if( analysis.i_mb_partition16x8[i] == D_L1_8x8 ) x264_me_refine_qpel_rd( h, &analysis.l1.me16x8[i], analysis.i_lambda2, i*8, 1 ); else if( analysis.i_mb_partition16x8[i] == D_BI_8x8 ) { i_biweight = h->mb.bipred_weight[analysis.l0.me16x8[i].i_ref][analysis.l1.me16x8[i].i_ref]; x264_me_refine_bidir_rd( h, &analysis.l0.me16x8[i], &analysis.l1.me16x8[i], i_biweight, i*2, analysis.i_lambda2 ); } } } else if( i_partition == D_8x16 ) { for( int i = 0; i < 2; i++ ) { h->mb.i_sub_partition[i] = h->mb.i_sub_partition[i+2] = analysis.i_mb_partition8x16[i]; if( analysis.i_mb_partition8x16[i] == D_L0_8x8 ) x264_me_refine_qpel_rd( h, &analysis.l0.me8x16[i], analysis.i_lambda2, i*4, 0 ); else if( analysis.i_mb_partition8x16[i] == D_L1_8x8 ) x264_me_refine_qpel_rd( h, &analysis.l1.me8x16[i], analysis.i_lambda2, i*4, 1 ); else if( analysis.i_mb_partition8x16[i] == D_BI_8x8 ) { i_biweight = h->mb.bipred_weight[analysis.l0.me8x16[i].i_ref][analysis.l1.me8x16[i].i_ref]; x264_me_refine_bidir_rd( h, &analysis.l0.me8x16[i], &analysis.l1.me8x16[i], i_biweight, i, analysis.i_lambda2 ); } } } else if( i_partition == D_8x8 ) { for( int i = 0; i < 4; i++ ) { if( h->mb.i_sub_partition[i] == D_L0_8x8 ) x264_me_refine_qpel_rd( h, &analysis.l0.me8x8[i], analysis.i_lambda2, i*4, 0 ); else if( h->mb.i_sub_partition[i] == D_L1_8x8 ) x264_me_refine_qpel_rd( h, &analysis.l1.me8x8[i], analysis.i_lambda2, i*4, 1 ); else if( h->mb.i_sub_partition[i] == D_BI_8x8 ) { i_biweight = h->mb.bipred_weight[analysis.l0.me8x8[i].i_ref][analysis.l1.me8x8[i].i_ref]; x264_me_refine_bidir_rd( h, &analysis.l0.me8x8[i], &analysis.l1.me8x8[i], i_biweight, i, analysis.i_lambda2 ); } } } } } } x264_analyse_update_cache( h, &analysis ); /* In rare cases we can end up qpel-RDing our way back to a larger partition size * without realizing it. Check for this and account for it if necessary. */ if( analysis.i_mbrd >= 2 ) { /* Don't bother with bipred or 8x8-and-below, the odds are incredibly low. */ static const uint8_t check_mv_lists[X264_MBTYPE_MAX] = {[P_L0]=1, [B_L0_L0]=1, [B_L1_L1]=2}; int list = check_mv_lists[h->mb.i_type] - 1; if( list >= 0 && h->mb.i_partition != D_16x16 && M32( &h->mb.cache.mv[list][x264_scan8[0]] ) == M32( &h->mb.cache.mv[list][x264_scan8[12]] ) && h->mb.cache.ref[list][x264_scan8[0]] == h->mb.cache.ref[list][x264_scan8[12]] ) h->mb.i_partition = D_16x16; } if( !analysis.i_mbrd ) x264_mb_analyse_transform( h ); if( analysis.i_mbrd == 3 && !IS_SKIP(h->mb.i_type) ) x264_mb_analyse_qp_rd( h, &analysis ); h->mb.b_trellis = h->param.analyse.i_trellis; h->mb.b_noise_reduction = h->mb.b_noise_reduction || (!!h->param.analyse.i_noise_reduction && !IS_INTRA( h->mb.i_type )); if( !IS_SKIP(h->mb.i_type) && h->mb.i_psy_trellis && h->param.analyse.i_trellis == 1 ) x264_psy_trellis_init( h, 0 ); if( h->mb.b_trellis == 1 || h->mb.b_noise_reduction ) h->mb.i_skip_intra = 0; }
尽管x264_macroblock_analyse()的源代码比较长,但是它的逻辑比较清晰,如下所示:
(1)如果当前是I Slice,调用x264_mb_analyse_intra()进行Intra宏块的帧内预测模式分析。
(2)如果当前是P Slice,则进行下面流程的分析:a)调用x264_macroblock_probe_pskip()分析是否为Skip宏块,如果是的话则不再进行下面分析。b)调用x264_mb_analyse_inter_p16x16()分析P16x16帧间预测的代价。
c)调用x264_mb_analyse_inter_p8x8()分析P8x8帧间预测的代价。
d)如果P8x8代价值小于P16x16,则依次对4个8x8的子宏块分割进行判断:
i.调用x264_mb_analyse_inter_p4x4()分析P4x4帧间预测的代价。ii.如果P4x4代价值小于P8x8,则调用 x264_mb_analyse_inter_p8x4()和x264_mb_analyse_inter_p4x8()分析P8x4和P4x8帧间预测的代价。e)如果P8x8代价值小于P16x16,调用x264_mb_analyse_inter_p16x8()和x264_mb_analyse_inter_p8x16()分析P16x8和P8x16帧间预测的代价。
f)此外还要调用x264_mb_analyse_intra(),检查当前宏块作为Intra宏块编码的代价是否小于作为P宏块编码的代价(P Slice中也允许有Intra宏块)。
(3)如果当前是B Slice,则进行和P Slice类似的处理。
本文记录这一流程中Intra宏块的帧内预测模式分析函数x264_mb_analyse_intra()。
x264_mb_analyse_intra()
x264_mb_analyse_intra()用于对Intra宏块进行帧内预测模式的分析。该函数的定义位于encoder\analyse.c,如下所示。
//帧内预测分析-从16x16的SAD,4个8x8的SAD和,16个4x4SAD中选出最优方式 static void x264_mb_analyse_intra( x264_t *h, x264_mb_analysis_t *a, int i_satd_inter ) { const unsigned int flags = h->sh.i_type == SLICE_TYPE_I ? h->param.analyse.intra : h->param.analyse.inter; //计算 //p_fenc是编码帧 pixel *p_src = h->mb.pic.p_fenc[0]; //p_fdec是重建帧 pixel *p_dst = h->mb.pic.p_fdec[0]; static const int8_t intra_analysis_shortcut[2][2][2][5] = { {{{I_PRED_4x4_HU, -1, -1, -1, -1}, {I_PRED_4x4_DDL, I_PRED_4x4_VL, -1, -1, -1}}, {{I_PRED_4x4_DDR, I_PRED_4x4_HD, I_PRED_4x4_HU, -1, -1}, {I_PRED_4x4_DDL, I_PRED_4x4_DDR, I_PRED_4x4_VR, I_PRED_4x4_VL, -1}}}, {{{I_PRED_4x4_HU, -1, -1, -1, -1}, {-1, -1, -1, -1, -1}}, {{I_PRED_4x4_DDR, I_PRED_4x4_HD, I_PRED_4x4_HU, -1, -1}, {I_PRED_4x4_DDR, I_PRED_4x4_VR, -1, -1, -1}}}, }; int idx; int lambda = a->i_lambda; /*---------------- Try all mode and calculate their score ---------------*/ /* Disabled i16x16 for AVC-Intra compat */ //帧内16x16 if( !h->param.i_avcintra_class ) { //获得可用的帧内预测模式-针对帧内16x16 /* * 16x16块 * * +--------+--------+ * | | * | | * | | * + + + * | | * | | * | | * +--------+--------+ * */ //左侧是否有可用数据?上方是否有可用数据? const int8_t *predict_mode = predict_16x16_mode_available( h->mb.i_neighbour_intra ); /* Not heavily tuned */ static const uint8_t i16x16_thresh_lut[11] = { 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4 }; int i16x16_thresh = a->b_fast_intra ? (i16x16_thresh_lut[h->mb.i_subpel_refine]*i_satd_inter)>>1 : COST_MAX; if( !h->mb.b_lossless && predict_mode[3] >= 0 ) { h->pixf.intra_mbcmp_x3_16x16( p_src, p_dst, a->i_satd_i16x16_dir ); a->i_satd_i16x16_dir[0] += lambda * bs_size_ue(0); a->i_satd_i16x16_dir[1] += lambda * bs_size_ue(1); a->i_satd_i16x16_dir[2] += lambda * bs_size_ue(2); COPY2_IF_LT( a->i_satd_i16x16, a->i_satd_i16x16_dir[0], a->i_predict16x16, 0 ); COPY2_IF_LT( a->i_satd_i16x16, a->i_satd_i16x16_dir[1], a->i_predict16x16, 1 ); COPY2_IF_LT( a->i_satd_i16x16, a->i_satd_i16x16_dir[2], a->i_predict16x16, 2 ); /* Plane is expensive, so don't check it unless one of the previous modes was useful. */ if( a->i_satd_i16x16 <= i16x16_thresh ) { h->predict_16x16[I_PRED_16x16_P]( p_dst ); a->i_satd_i16x16_dir[I_PRED_16x16_P] = h->pixf.mbcmp[PIXEL_16x16]( p_dst, FDEC_STRIDE, p_src, FENC_STRIDE ); a->i_satd_i16x16_dir[I_PRED_16x16_P] += lambda * bs_size_ue(3); COPY2_IF_LT( a->i_satd_i16x16, a->i_satd_i16x16_dir[I_PRED_16x16_P], a->i_predict16x16, 3 ); } } else { //遍历所有的可用的Intra16x16帧内预测模式 //最多4种 for( ; *predict_mode >= 0; predict_mode++ ) { int i_satd; int i_mode = *predict_mode; //帧内预测汇编函数:根据左边和上边的像素计算出预测值 /* * 帧内预测举例 * Vertical预测方式 * |X1 X2 ... X16 * --+--------------- * |X1 X2 ... X16 * |X1 X2 ... X16 * |.. .. ... X16 * |X1 X2 ... X16 * * Horizontal预测方式 * | * --+--------------- * X1| X1 X1 ... X1 * X2| X2 X2 ... X2 * ..| .. .. ... .. * X16|X16 X16 ... X16 * * DC预测方式 * |X1 X2 ... X16 * --+--------------- * X17| * X18| Y * ..| * X32| * * Y=(X1+X2+X3+X4+...+X31+X32)/32 * */ if( h->mb.b_lossless ) x264_predict_lossless_16x16( h, 0, i_mode ); else h->predict_16x16[i_mode]( p_dst );//计算结果存储在p_dst重建帧中 //计算SAD或者是SATD(SATD(transformed)是经过Hadamard变换之后的SAD) //即编码代价 //数据位于p_dst和p_src i_satd = h->pixf.mbcmp[PIXEL_16x16]( p_dst, FDEC_STRIDE, p_src, FENC_STRIDE ) + lambda * bs_size_ue( x264_mb_pred_mode16x16_fix[i_mode] ); //COPY2_IF_LT()函数的意思是“copy if little”。即如果值更小(代价更小),就拷贝。 //宏定义展开后如下所示 //if((i_satd)<(a->i_satd_i16x16)) //{ // (a->i_satd_i16x16)=(i_satd); // (a->i_predict16x16)=(i_mode); //} COPY2_IF_LT( a->i_satd_i16x16, i_satd, a->i_predict16x16, i_mode ); //每种模式的代价都会存储 a->i_satd_i16x16_dir[i_mode] = i_satd; } } if( h->sh.i_type == SLICE_TYPE_B ) /* cavlc mb type prefix */ a->i_satd_i16x16 += lambda * i_mb_b_cost_table[I_16x16]; if( a->i_satd_i16x16 > i16x16_thresh ) return; } uint16_t *cost_i4x4_mode = (uint16_t*)ALIGN((intptr_t)x264_cost_i4x4_mode,64) + a->i_qp*32 + 8; /* 8x8 prediction selection */ //帧内8x8(没研究过) if( flags & X264_ANALYSE_I8x8 ) { ALIGNED_ARRAY_32( pixel, edge,[36] ); x264_pixel_cmp_t sa8d = (h->pixf.mbcmp[0] == h->pixf.satd[0]) ? h->pixf.sa8d[PIXEL_8x8] : h->pixf.mbcmp[PIXEL_8x8]; int i_satd_thresh = a->i_mbrd ? COST_MAX : X264_MIN( i_satd_inter, a->i_satd_i16x16 ); // FIXME some bias like in i4x4? int i_cost = lambda * 4; /* base predmode costs */ h->mb.i_cbp_luma = 0; if( h->sh.i_type == SLICE_TYPE_B ) i_cost += lambda * i_mb_b_cost_table[I_8x8]; for( idx = 0;; idx++ ) { int x = idx&1; int y = idx>>1; pixel *p_src_by = p_src + 8*x + 8*y*FENC_STRIDE; pixel *p_dst_by = p_dst + 8*x + 8*y*FDEC_STRIDE; int i_best = COST_MAX; int i_pred_mode = x264_mb_predict_intra4x4_mode( h, 4*idx ); const int8_t *predict_mode = predict_8x8_mode_available( a->b_avoid_topright, h->mb.i_neighbour8[idx], idx ); h->predict_8x8_filter( p_dst_by, edge, h->mb.i_neighbour8[idx], ALL_NEIGHBORS ); if( h->pixf.intra_mbcmp_x9_8x8 && predict_mode[8] >= 0 ) { /* No shortcuts here. The SSSE3 implementation of intra_mbcmp_x9 is fast enough. */ i_best = h->pixf.intra_mbcmp_x9_8x8( p_src_by, p_dst_by, edge, cost_i4x4_mode-i_pred_mode, a->i_satd_i8x8_dir[idx] ); i_cost += i_best & 0xffff; i_best >>= 16; a->i_predict8x8[idx] = i_best; if( idx == 3 || i_cost > i_satd_thresh ) break; x264_macroblock_cache_intra8x8_pred( h, 2*x, 2*y, i_best ); } else { if( !h->mb.b_lossless && predict_mode[5] >= 0 ) { ALIGNED_ARRAY_16( int32_t, satd,[9] ); h->pixf.intra_mbcmp_x3_8x8( p_src_by, edge, satd ); int favor_vertical = satd[I_PRED_4x4_H] > satd[I_PRED_4x4_V]; satd[i_pred_mode] -= 3 * lambda; for( int i = 2; i >= 0; i-- ) { int cost = satd[i]; a->i_satd_i8x8_dir[idx][i] = cost + 4 * lambda; COPY2_IF_LT( i_best, cost, a->i_predict8x8[idx], i ); } /* Take analysis shortcuts: don't analyse modes that are too * far away direction-wise from the favored mode. */ if( a->i_mbrd < 1 + a->b_fast_intra ) predict_mode = intra_analysis_shortcut[a->b_avoid_topright][predict_mode[8] >= 0][favor_vertical]; else predict_mode += 3; } for( ; *predict_mode >= 0 && (i_best >= 0 || a->i_mbrd >= 2); predict_mode++ ) { int i_satd; int i_mode = *predict_mode; if( h->mb.b_lossless ) x264_predict_lossless_8x8( h, p_dst_by, 0, idx, i_mode, edge ); else h->predict_8x8[i_mode]( p_dst_by, edge ); i_satd = sa8d( p_dst_by, FDEC_STRIDE, p_src_by, FENC_STRIDE ); if( i_pred_mode == x264_mb_pred_mode4x4_fix(i_mode) ) i_satd -= 3 * lambda; COPY2_IF_LT( i_best, i_satd, a->i_predict8x8[idx], i_mode ); a->i_satd_i8x8_dir[idx][i_mode] = i_satd + 4 * lambda; } i_cost += i_best + 3*lambda; if( idx == 3 || i_cost > i_satd_thresh ) break; if( h->mb.b_lossless ) x264_predict_lossless_8x8( h, p_dst_by, 0, idx, a->i_predict8x8[idx], edge ); else h->predict_8x8[a->i_predict8x8[idx]]( p_dst_by, edge ); x264_macroblock_cache_intra8x8_pred( h, 2*x, 2*y, a->i_predict8x8[idx] ); } /* we need to encode this block now (for next ones) */ x264_mb_encode_i8x8( h, 0, idx, a->i_qp, a->i_predict8x8[idx], edge, 0 ); } if( idx == 3 ) { a->i_satd_i8x8 = i_cost; if( h->mb.i_skip_intra ) { h->mc.copy[PIXEL_16x16]( h->mb.pic.i8x8_fdec_buf, 16, p_dst, FDEC_STRIDE, 16 ); h->mb.pic.i8x8_nnz_buf[0] = M32( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ); h->mb.pic.i8x8_nnz_buf[1] = M32( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ); h->mb.pic.i8x8_nnz_buf[2] = M32( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ); h->mb.pic.i8x8_nnz_buf[3] = M32( &h->mb.cache.non_zero_count[x264_scan8[10]] ); h->mb.pic.i8x8_cbp = h->mb.i_cbp_luma; if( h->mb.i_skip_intra == 2 ) h->mc.memcpy_aligned( h->mb.pic.i8x8_dct_buf, h->dct.luma8x8, sizeof(h->mb.pic.i8x8_dct_buf) ); } } else { static const uint16_t cost_div_fix8[3] = {1024,512,341}; a->i_satd_i8x8 = COST_MAX; i_cost = (i_cost * cost_div_fix8[idx]) >> 8; } /* Not heavily tuned */ static const uint8_t i8x8_thresh[11] = { 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6 }; if( a->b_early_terminate && X264_MIN(i_cost, a->i_satd_i16x16) > (i_satd_inter*i8x8_thresh[h->mb.i_subpel_refine])>>2 ) return; } /* 4x4 prediction selection */ //帧内4x4 if( flags & X264_ANALYSE_I4x4 ) { /* * 16x16 宏块被划分为16个4x4子块 * * +----+----+----+----+ * | | | | | * +----+----+----+----+ * | | | | | * +----+----+----+----+ * | | | | | * +----+----+----+----+ * | | | | | * +----+----+----+----+ * */ int i_cost = lambda * (24+16); /* 24from JVT (SATD0), 16 from base predmode costs */ int i_satd_thresh = a->b_early_terminate ? X264_MIN3( i_satd_inter, a->i_satd_i16x16, a->i_satd_i8x8 ) : COST_MAX; h->mb.i_cbp_luma = 0; if( a->b_early_terminate && a->i_mbrd ) i_satd_thresh = i_satd_thresh * (10-a->b_fast_intra)/8; if( h->sh.i_type == SLICE_TYPE_B ) i_cost += lambda * i_mb_b_cost_table[I_4x4]; //循环所有的4x4块 for( idx = 0;; idx++ ) { //编码帧中的像素 //block_idx_xy_fenc[]记录了4x4小块在p_fenc中的偏移地址 pixel *p_src_by = p_src + block_idx_xy_fenc[idx]; //重建帧中的像素 //block_idx_xy_fdec[]记录了4x4小块在p_fdec中的偏移地址 pixel *p_dst_by = p_dst + block_idx_xy_fdec[idx]; int i_best = COST_MAX; int i_pred_mode = x264_mb_predict_intra4x4_mode( h, idx ); //获得可用的帧内预测模式-针对帧内4x4 //左侧是否有可用数据?上方是否有可用数据? const int8_t *predict_mode = predict_4x4_mode_available( a->b_avoid_topright, h->mb.i_neighbour4[idx], idx ); if( (h->mb.i_neighbour4[idx] & (MB_TOPRIGHT|MB_TOP)) == MB_TOP ) /* emulate missing topright samples */ MPIXEL_X4( &p_dst_by[4 - FDEC_STRIDE] ) = PIXEL_SPLAT_X4( p_dst_by[3 - FDEC_STRIDE] ); if( h->pixf.intra_mbcmp_x9_4x4 && predict_mode[8] >= 0 ) { /* No shortcuts here. The SSSE3 implementation of intra_mbcmp_x9 is fast enough. */ i_best = h->pixf.intra_mbcmp_x9_4x4( p_src_by, p_dst_by, cost_i4x4_mode-i_pred_mode ); i_cost += i_best & 0xffff; i_best >>= 16; a->i_predict4x4[idx] = i_best; if( i_cost > i_satd_thresh || idx == 15 ) break; h->mb.cache.intra4x4_pred_mode[x264_scan8[idx]] = i_best; } else { if( !h->mb.b_lossless && predict_mode[5] >= 0 ) { ALIGNED_ARRAY_16( int32_t, satd,[9] ); h->pixf.intra_mbcmp_x3_4x4( p_src_by, p_dst_by, satd ); int favor_vertical = satd[I_PRED_4x4_H] > satd[I_PRED_4x4_V]; satd[i_pred_mode] -= 3 * lambda; i_best = satd[I_PRED_4x4_DC]; a->i_predict4x4[idx] = I_PRED_4x4_DC; COPY2_IF_LT( i_best, satd[I_PRED_4x4_H], a->i_predict4x4[idx], I_PRED_4x4_H ); COPY2_IF_LT( i_best, satd[I_PRED_4x4_V], a->i_predict4x4[idx], I_PRED_4x4_V ); /* Take analysis shortcuts: don't analyse modes that are too * far away direction-wise from the favored mode. */ if( a->i_mbrd < 1 + a->b_fast_intra ) predict_mode = intra_analysis_shortcut[a->b_avoid_topright][predict_mode[8] >= 0][favor_vertical]; else predict_mode += 3; } if( i_best > 0 ) { //遍历所有Intra4x4帧内模式,最多9种 for( ; *predict_mode >= 0; predict_mode++ ) { int i_satd; int i_mode = *predict_mode; /* * 4x4帧内预测举例 * * Vertical预测方式 * |X1 X2 X3 X4 * --+----------- * |X1 X2 X3 X4 * |X1 X2 X3 X4 * |X1 X2 X3 X4 * |X1 X2 X3 X4 * * Horizontal预测方式 * | * --+----------- * X5|X5 X5 X5 X5 * X6|X6 X6 X6 X6 * X7|X7 X7 X7 X7 * X8|X8 X8 X8 X8 * * DC预测方式 * |X1 X2 X3 X4 * --+----------- * X5| * X6| Y * X7| * X8| * * Y=(X1+X2+X3+X4+X5+X6+X7+X8)/8 * */ if( h->mb.b_lossless ) x264_predict_lossless_4x4( h, p_dst_by, 0, idx, i_mode ); else h->predict_4x4[i_mode]( p_dst_by );//帧内预测汇编函数-存储在重建帧中 //计算SAD或者是SATD(SATD(Transformed)是经过Hadamard变换之后的SAD) //即编码代价 //p_src_by编码帧,p_dst_by重建帧 i_satd = h->pixf.mbcmp[PIXEL_4x4]( p_dst_by, FDEC_STRIDE, p_src_by, FENC_STRIDE ); if( i_pred_mode == x264_mb_pred_mode4x4_fix(i_mode) ) { i_satd -= lambda * 3; if( i_satd <= 0 ) { i_best = i_satd; a->i_predict4x4[idx] = i_mode; break; } } //COPY2_IF_LT()函数的意思是“copy if little”。即如果值更小(代价更小),就拷贝。 //宏定义展开后如下所示 //if((i_satd)<(i_best)) //{ // (i_best)=(i_satd); // (a->i_predict4x4[idx])=(i_mode); //} //看看代价是否更小 //i_best中存储了最小的代价值 //i_predict4x4[idx]中存储了代价最小的预测模式(idx为4x4小块的序号) COPY2_IF_LT( i_best, i_satd, a->i_predict4x4[idx], i_mode ); } } //累加各个4x4块的代价(累加每个块的最小代价) i_cost += i_best + 3 * lambda; if( i_cost > i_satd_thresh || idx == 15 ) break; if( h->mb.b_lossless ) x264_predict_lossless_4x4( h, p_dst_by, 0, idx, a->i_predict4x4[idx] ); else h->predict_4x4[a->i_predict4x4[idx]]( p_dst_by ); /* * 将mode填充至intra4x4_pred_mode_cache * * 用简单图形表示intra4x4_pred_mode_cache如下。数字代表填充顺序(一共填充16次) * | * --+------------------- * | 0 0 0 0 0 0 0 0 * | 0 0 0 0 1 2 5 6 * | 0 0 0 0 3 4 7 8 * | 0 0 0 0 9 10 13 14 * | 0 0 0 0 11 12 15 16 * */ h->mb.cache.intra4x4_pred_mode[x264_scan8[idx]] = a->i_predict4x4[idx]; } /* we need to encode this block now (for next ones) */ x264_mb_encode_i4x4( h, 0, idx, a->i_qp, a->i_predict4x4[idx], 0 ); } if( idx == 15 )//处理最后一个4x4小块(一共16个块) { //开销(累加完的) a->i_satd_i4x4 = i_cost; if( h->mb.i_skip_intra ) { h->mc.copy[PIXEL_16x16]( h->mb.pic.i4x4_fdec_buf, 16, p_dst, FDEC_STRIDE, 16 ); h->mb.pic.i4x4_nnz_buf[0] = M32( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ); h->mb.pic.i4x4_nnz_buf[1] = M32( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ); h->mb.pic.i4x4_nnz_buf[2] = M32( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ); h->mb.pic.i4x4_nnz_buf[3] = M32( &h->mb.cache.non_zero_count[x264_scan8[10]] ); h->mb.pic.i4x4_cbp = h->mb.i_cbp_luma; if( h->mb.i_skip_intra == 2 ) h->mc.memcpy_aligned( h->mb.pic.i4x4_dct_buf, h->dct.luma4x4, sizeof(h->mb.pic.i4x4_dct_buf) ); } } else a->i_satd_i4x4 = COST_MAX; } }
总体说来x264_mb_analyse_intra()通过计算Intra16x16,Intra8x8(暂时没有研究),Intra4x4这3中帧内预测模式的代价,比较后得到最佳的帧内预测模式。该函数的等流程大致如下:
(1)进行Intra16X16模式的预测a)调用predict_16x16_mode_available()根据周围宏块的情况判断其可用的预测模式(主要检查左边和上边的块是否可用)。b)循环计算4种Intra16x16帧内预测模式:
i.调用predict_16x16[]()汇编函数进行Intra16x16帧内预测ii.调用x264_pixel_function_t中的mbcmp[]()计算编码代价(mbcmp[]()指向SAD或者SATD汇编函数)。c)获取最小代价的Intra16x16模式。
(2)进行Intra8x8模式的预测(未研究,流程应该类似)
(3)进行Intra4X4块模式的预测a)循环处理16个4x4的块:i.调用x264_mb_predict_intra4x4_mode()根据周围宏块情况判断该块可用的预测模式。ii.循环计算9种Intra4x4的帧内预测模式:1)调用predict_4x4 []()汇编函数进行Intra4x4帧内预测2)调用x264_pixel_function_t中的mbcmp[]()计算编码代价(mbcmp[]()指向SAD或者SATD汇编函数)。iii.获取最小代价的Intra4x4模式。b)将16个4X4块的最小代价相加,得到总代价。
(4)将上述3中模式的代价进行对比,取最小者为当前宏块的帧内预测模式。
后文将会对其中涉及到的几种汇编函数进行分析。在看源代码之前,简单记录一下相关的知识。
帧内预测知识
简单记录一下帧内预测的方法。帧内预测根据宏块左边和上边的边界像素值推算宏块内部的像素值,帧内预测的效果如下图所示。其中左边的图为图像原始画面,右边的图为经过帧内预测后没有叠加残差的画面。
H.264中有两种帧内预测模式:16x16亮度帧内预测模式和4x4亮度帧内预测模式。其中16x16帧内预测模式一共有4种,如下图所示。
这4种模式列表如下。
模式 |
描述 |
Vertical |
由上边像素推出相应像素值 |
Horizontal |
由左边像素推出相应像素值 |
DC |
由上边和左边像素平均值推出相应像素值 |
Plane |
由上边和左边像素推出相应像素值 |
4x4帧内预测模式一共有9种,如下图所示。
可以看出,Intra4x4帧内预测模式中前4种和Intra16x16是一样的。后面多增加了几种预测箭头不是45度角的方式——前面的箭头位于“口”中,而后面的箭头位于“日”中。
像素比较知识
帧内预测代价计算的过程中涉及到SAD和SATD像素计算,简单记录几个相关的概念。有关SAD、SATD、SSD的定义如下:
SAD(Sum of Absolute Difference)也可以称为SAE(Sum of Absolute Error),即绝对误差和。它的计算方法就是求出两个像素块对应像素点的差值,将这些差值分别求绝对值之后再进行累加。
SATD(Sum of Absolute Transformed Difference)即Hadamard变换后再绝对值求和。它和SAD的区别在于多了一个“变换”。
SSD(Sum of Squared Difference)也可以称为SSE(Sum of Squared Error),即差值的平方和。它和SAD的区别在于多了一个“平方”。
H.264中使用SAD和SATD进行宏块预测模式的判断。早期的编码器使用SAD进行计算,近期的编码器多使用SATD进行计算。为什么使用SATD而不使用SAD呢?关键原因在于编码之后码流的大小是和图像块DCT变换后频域信息紧密相关的,而和变换前的时域信息关联性小一些。SAD只能反应时域信息;SATD却可以反映频域信息,而且计算复杂度也低于DCT变换,因此是比较合适的模式选择的依据。
使用SAD进行模式选择的示例如下所示。下面这张图代表了一个普通的Intra16x16的宏块的像素。它的下方包含了使用Vertical,Horizontal,DC和Plane四种帧内预测模式预测的像素。通过计算可以得到这几种预测像素和原始像素之间的SAD(SAE)分别为3985,5097,4991,2539。由于Plane模式的SAD取值最小,由此可以断定Plane模式对于这个宏块来说是最好的帧内预测模式。
下面按照Intra16x16预测,Intra4x4预测,像素计算的顺序记录依次记录各个模块的汇编函数源代码。
Intra16x16帧内预测源代码
Intra16x16帧内预测模块的初始化函数是x264_predict_16x16_init()。该函数对x264_predict_t结构体中的函数指针进行了赋值。X264运行的过程中只要调用x264_predict_t的函数指针就可以完成相应的功能。
x264_predict_16x16_init()
x264_predict_16x16_init()用于初始化Intra16x16帧内预测汇编函数。该函数的定义位于x264\common\predict.c,如下所示。
//Intra16x16帧内预测汇编函数初始化 void x264_predict_16x16_init( int cpu, x264_predict_t pf[7] ) { //C语言版本 //================================================ //垂直 Vertical pf[I_PRED_16x16_V ] = x264_predict_16x16_v_c; //水平 Horizontal pf[I_PRED_16x16_H ] = x264_predict_16x16_h_c; //DC pf[I_PRED_16x16_DC] = x264_predict_16x16_dc_c; //Plane pf[I_PRED_16x16_P ] = x264_predict_16x16_p_c; //这几种是啥? pf[I_PRED_16x16_DC_LEFT]= x264_predict_16x16_dc_left_c; pf[I_PRED_16x16_DC_TOP ]= x264_predict_16x16_dc_top_c; pf[I_PRED_16x16_DC_128 ]= x264_predict_16x16_dc_128_c; //================================================ //MMX版本 #if HAVE_MMX x264_predict_16x16_init_mmx( cpu, pf ); #endif //ALTIVEC版本 #if HAVE_ALTIVEC if( cpu&X264_CPU_ALTIVEC ) x264_predict_16x16_init_altivec( pf ); #endif //ARMV6版本 #if HAVE_ARMV6 x264_predict_16x16_init_arm( cpu, pf ); #endif //AARCH64版本 #if ARCH_AARCH64 x264_predict_16x16_init_aarch64( cpu, pf ); #endif }
从源代码可看出,x264_predict_16x16_init()首先对帧内预测函数指针数组x264_predict_t[]中的元素赋值了C语言版本的函数x264_predict_16x16_v_c(),x264_predict_16x16_h_c(),x264_predict_16x16_dc_c(),x264_predict_16x16_p_c();然后会判断系统平台的特性,如果平台支持的话,会调用x264_predict_16x16_init_mmx(),x264_predict_16x16_init_arm()等给x264_predict_t[]中的元素赋值经过汇编优化的函数。下文首先看一下Intra16x16中的4种帧内预测模式的C语言版本,作为对比再看一下Intra16x16中Vertical模式的X86汇编版本和NEON汇编版本。
x264_predict_16x16_v_c()
x264_predict_16x16_v_c()是Intra16x16帧内预测Vertical模式的C语言版本函数。该函数的定义位于common\predict.c,如下所示。
//16x16帧内预测 //垂直预测(Vertical) void x264_predict_16x16_v_c( pixel *src ) { /* * Vertical预测方式 * |X1 X2 X3 X4 * --+----------- * |X1 X2 X3 X4 * |X1 X2 X3 X4 * |X1 X2 X3 X4 * |X1 X2 X3 X4 * */ /* * 【展开宏定义】 * uint32_t v0 = ((x264_union32_t*)(&src[ 0-FDEC_STRIDE]))->i; * uint32_t v1 = ((x264_union32_t*)(&src[ 4-FDEC_STRIDE]))->i; * uint32_t v2 = ((x264_union32_t*)(&src[ 8-FDEC_STRIDE]))->i; * uint32_t v3 = ((x264_union32_t*)(&src[12-FDEC_STRIDE]))->i; * 在这里,上述代码实际上相当于: * uint32_t v0 = *((uint32_t*)(&src[ 0-FDEC_STRIDE])); * uint32_t v1 = *((uint32_t*)(&src[ 4-FDEC_STRIDE])); * uint32_t v2 = *((uint32_t*)(&src[ 8-FDEC_STRIDE])); * uint32_t v3 = *((uint32_t*)(&src[12-FDEC_STRIDE])); * 即分成4次,每次取出4个像素(一共16个像素),分别赋值给v0,v1,v2,v3 * 取出的值源自于16x16块上面的一行像素 * 0| 4 8 12 16 * || v0 | v1 | v2 | v3 | * ---++==========+==========+==========+==========+ * || * || * || * || * || * || * */ //pixel4实际上是uint32_t(占用32bit),存储4个像素的值(每个像素占用8bit) pixel4 v0 = MPIXEL_X4( &src[ 0-FDEC_STRIDE] ); pixel4 v1 = MPIXEL_X4( &src[ 4-FDEC_STRIDE] ); pixel4 v2 = MPIXEL_X4( &src[ 8-FDEC_STRIDE] ); pixel4 v3 = MPIXEL_X4( &src[12-FDEC_STRIDE] ); //循环赋值16行 for( int i = 0; i < 16; i++ ) { //【展开宏定义】 //(((x264_union32_t*)(src+ 0))->i) = v0; //(((x264_union32_t*)(src+ 4))->i) = v1; //(((x264_union32_t*)(src+ 8))->i) = v2; //(((x264_union32_t*)(src+12))->i) = v3; //即分成4次,每次赋值4个像素 // MPIXEL_X4( src+ 0 ) = v0; MPIXEL_X4( src+ 4 ) = v1; MPIXEL_X4( src+ 8 ) = v2; MPIXEL_X4( src+12 ) = v3; //下一行 //FDEC_STRIDE=32,是重建宏块缓存fdec_buf一行的数据量 src += FDEC_STRIDE; } }
从源代码可以看出,x264_predict_16x16_v_c()首先取出16x16块上面一行像素值,依次存储在v0、v1、v2、v3,然后循环16次赋值给块中的16行像素。
x264_predict_16x16_h_c()
x264_predict_16x16_h_c()是Intra16x16帧内预测Horizontal模式的C语言版本函数。该函数的定义位于common\predict.c,如下所示。
//16x16帧内预测 //水平预测(Horizontal) void x264_predict_16x16_h_c( pixel *src ) { /* * Horizontal预测方式 * | * --+----------- * X5|X5 X5 X5 X5 * X6|X6 X6 X6 X6 * X7|X7 X7 X7 X7 * X8|X8 X8 X8 X8 * */ /* * const pixel4 v = PIXEL_SPLAT_X4( src[-1] ); * 宏定义展开后 * const uint32_t v = (src[-1])*0x01010101U; * * PIXEL_SPLAT_X4()的作用应该是把最后一个像素(最后8位)拷贝给前面3个像素(前24位) * 即把0x0100009F变成0x9F9F9F9F * 推导: * 前提是x占8bit(对应1个像素) * y=x*0x01010101 * =x*(0x00000001+0x00000100+0x00010000+0x01000000) * =x<<0+x<<8+x<<16+x<<24 * * const uint32_t v = (src[-1])*0x01010101U含义: * 每行把src[-1]中像素值例如0x02赋值给v.v取值为0x02020202 * src[-1]即16x16块左侧的值 */ //循环赋值16行 for( int i = 0; i < 16; i++ ) { const pixel4 v = PIXEL_SPLAT_X4( src[-1] ); //宏定义展开后: //((x264_union32_t*)(src+ 0))->i=v; //((x264_union32_t*)(src+ 4))->i=v; //((x264_union32_t*)(src+ 8))->i=v; //((x264_union32_t*)(src+12))->i=v; //即分4次,每次赋值4个像素(一行一共16个像素,取值是一样的) // // 0| 4 8 12 16 // || | | | | //---++==========+==========+==========+==========+ // || // v || v | v | v | v | // || // || // || // MPIXEL_X4( src+ 0 ) = v; MPIXEL_X4( src+ 4 ) = v; MPIXEL_X4( src+ 8 ) = v; MPIXEL_X4( src+12 ) = v; //下一行 //FDEC_STRIDE=32,是重建宏块缓存fdec_buf一行的数据量 src += FDEC_STRIDE; } }
从源代码可以看出,x264_predict_16x16_h_c()首先取出16x16块每行左边的1个像素,复制4份后存储在v中,然后分成4次将v赋值给这一行像素。其中“PIXEL_SPLAT_X4()”的功能是取出变量低8位的数值复制4份到高24位,相关的推导功能已经记录在源代码中,不再重复叙述。
x264_predict_16x16_dc_c()
x264_predict_16x16_dc_c()是Intra16x16帧内预测DC模式的C语言版本函数。该函数的定义位于common\predict.c,如下所示。
#define PREDICT_16x16_DC(v)\ for( int i = 0; i < 16; i++ )\ {\ MPIXEL_X4( src+ 0 ) = v;\ MPIXEL_X4( src+ 4 ) = v;\ MPIXEL_X4( src+ 8 ) = v;\ MPIXEL_X4( src+12 ) = v;\ src += FDEC_STRIDE;\ } void x264_predict_16x16_dc_c( pixel *src ) { /* * DC预测方式 * |X1 X2 X3 X4 * --+----------- * X5| * X6| Y * X7| * X8| * * Y=(X1+X2+X3+X4+X5+X6+X7+X8)/8 */ int dc = 0; //把16x16块中所有像素的值加起来,存储在dc中 for( int i = 0; i < 16; i++ ) { //左侧的值 dc += src[-1 + i * FDEC_STRIDE]; //上方的值 dc += src[i - FDEC_STRIDE]; } //加起来的值除以32(一共16+16个点) //“+16”是为了四舍五入? //PIXEL_SPLAT_X4()的作用应该是把最后一个像素(最后8位)拷贝给前面3个像素(前24位) //即把0x0100009F变成0x9F9F9F9F pixel4 dcsplat = PIXEL_SPLAT_X4( ( dc + 16 ) >> 5 ); //赋值到16x16块中的每个像素 /* * 宏展开之后结果 * for( int i = 0; i < 16; i++ ) * { * (((x264_union32_t*)(src+ 0))->i) = dcsplat; * (((x264_union32_t*)(src+ 4))->i) = dcsplat; * (((x264_union32_t*)(src+ 8))->i) = dcsplat; * (((x264_union32_t*)(src+12))->i) = dcsplat; * src += 32; * } */ PREDICT_16x16_DC( dcsplat ); }
从源代码可以看出,x264_predict_16x16_dc_c()求出16x16块上面一行像素和左边一列像素的平均值,然后赋值给16x16块中的每一个像素。
X86以及ARM平台汇编函数
除了C语言版本的帧内预测函数之外,还包含了很多汇编语言版本的函数。下面以Intra16x16帧内预测Vertical模式为例,看一下该函数的X86平台汇编版本以及ARM平台汇编版本。
x264_predict_16x16_init_mmx()
x264_predict_16x16_init_mmx()用于初始化经过x86汇编优化过的Intra16x16的帧内预测函数。该函数的定义位于common\x86\predict-c.c(在“x86”子文件夹下),如下所示。
//Intra16x16帧内预测汇编函数-MMX版本 void x264_predict_16x16_init_mmx( int cpu, x264_predict_t pf[7] ) { if( !(cpu&X264_CPU_MMX2) ) return; pf[I_PRED_16x16_DC] = x264_predict_16x16_dc_mmx2; pf[I_PRED_16x16_DC_TOP] = x264_predict_16x16_dc_top_mmx2; pf[I_PRED_16x16_DC_LEFT] = x264_predict_16x16_dc_left_mmx2; pf[I_PRED_16x16_V] = x264_predict_16x16_v_mmx2; pf[I_PRED_16x16_H] = x264_predict_16x16_h_mmx2; #if HIGH_BIT_DEPTH if( !(cpu&X264_CPU_SSE) ) return; pf[I_PRED_16x16_V] = x264_predict_16x16_v_sse; if( !(cpu&X264_CPU_SSE2) ) return; pf[I_PRED_16x16_DC] = x264_predict_16x16_dc_sse2; pf[I_PRED_16x16_DC_TOP] = x264_predict_16x16_dc_top_sse2; pf[I_PRED_16x16_DC_LEFT] = x264_predict_16x16_dc_left_sse2; pf[I_PRED_16x16_H] = x264_predict_16x16_h_sse2; pf[I_PRED_16x16_P] = x264_predict_16x16_p_sse2; if( !(cpu&X264_CPU_AVX) ) return; pf[I_PRED_16x16_V] = x264_predict_16x16_v_avx; if( !(cpu&X264_CPU_AVX2) ) return; pf[I_PRED_16x16_H] = x264_predict_16x16_h_avx2; #else #if !ARCH_X86_64 pf[I_PRED_16x16_P] = x264_predict_16x16_p_mmx2; #endif if( !(cpu&X264_CPU_SSE) ) return; pf[I_PRED_16x16_V] = x264_predict_16x16_v_sse; if( !(cpu&X264_CPU_SSE2) ) return; pf[I_PRED_16x16_DC] = x264_predict_16x16_dc_sse2; if( cpu&X264_CPU_SSE2_IS_SLOW ) return; pf[I_PRED_16x16_DC_TOP] = x264_predict_16x16_dc_top_sse2; pf[I_PRED_16x16_DC_LEFT] = x264_predict_16x16_dc_left_sse2; pf[I_PRED_16x16_P] = x264_predict_16x16_p_sse2; if( !(cpu&X264_CPU_SSSE3) ) return; if( !(cpu&X264_CPU_SLOW_PSHUFB) ) pf[I_PRED_16x16_H] = x264_predict_16x16_h_ssse3; #if HAVE_X86_INLINE_ASM pf[I_PRED_16x16_P] = x264_predict_16x16_p_ssse3; #endif if( !(cpu&X264_CPU_AVX) ) return; pf[I_PRED_16x16_P] = x264_predict_16x16_p_avx; #endif // HIGH_BIT_DEPTH if( cpu&X264_CPU_AVX2 ) { pf[I_PRED_16x16_P] = x264_predict_16x16_p_avx2; pf[I_PRED_16x16_DC] = x264_predict_16x16_dc_avx2; pf[I_PRED_16x16_DC_TOP] = x264_predict_16x16_dc_top_avx2; pf[I_PRED_16x16_DC_LEFT] = x264_predict_16x16_dc_left_avx2; } }
可以看出,针对Intra16x16的Vertical帧内预测模式,x264_predict_16x16_init_mmx()会根据系统的特型初始化2个函数:如果系统仅支持MMX指令集,就会初始化x264_predict_16x16_v_mmx2();如果系统还支持SSE指令集,就会初始化x264_predict_16x16_v_sse()。下面看一下这2个函数的代码。
x264_predict_16x16_v_mmx2()
x264_predict_16x16_v_sse()
在x264中,x264_predict_16x16_v_mmx2()和x264_predict_16x16_v_sse()这两个函数的定义是写到一起的。它们的定义位于common\x86\predict-a.asm,如下所示。
;----------------------------------------------------------------------------- ; void predict_16x16_v( pixel *src ) ; Intra16x16帧内预测Vertical模式 ;----------------------------------------------------------------------------- ;SIZEOF_PIXEL取值为1 ;FDEC_STRIDEB为重建宏块缓存fdec_buf一行像素的大小,取值为32 ; ;平台相关的信息位于x86inc.asm ;INIT_MMX中 ; mmsize为8 ; mova为movq ;INIT_XMM中: ; mmsize为16 ; mova为movdqa ; ;STORE16的定义在前面,用于循环16行存储数据 %macro PREDICT_16x16_V 0 cglobal predict_16x16_v, 1,2 %assign %%i 0 %rep 16*SIZEOF_PIXEL/mmsize ;rep循环执行,拷贝16x16块上方的1行像素数据至m0,m1... ;mmssize为指令1次处理比特数 mova m %+ %%i, [r0-FDEC_STRIDEB+%%i*mmsize] ;移入m0,m1... %assign %%i %%i+1 %endrep %if 16*SIZEOF_PIXEL/mmsize == 4 ;1行需要处理4次 STORE16 m0, m1, m2, m3 ;循环存储16行,每次存储4个寄存器 %elif 16*SIZEOF_PIXEL/mmsize == 2 ;1行需要处理2次 STORE16 m0, m1 ;循环存储16行,每次存储2个寄存器 %else ;1行需要处理1次 STORE16 m0 ;循环存储16行,每次存储1个寄存器 %endif RET %endmacro INIT_MMX mmx2 PREDICT_16x16_V INIT_XMM sse PREDICT_16x16_V
从汇编代码可以看出,x264_predict_16x16_v_mmx2()和x264_predict_16x16_v_sse()的逻辑是一模一样的。它们之间的不同主要在于一条指令处理的数据量:MMX指令的MOVA对应的是MOVQ,一次处理8Byte(8个像素);SSE指令的MOVA对应的是MOVDQA,一次处理16Byte(16个像素,正好是16x16块中的一行像素)。
作为对比,我们可以看一下ARM平台下汇编优化过的Intra16x16的帧内预测函数。这些汇编函数的初始化函数是x264_predict_16x16_init_arm()。
x264_predict_16x16_init_arm()
x264_predict_16x16_init_arm()用于初始化ARM平台下汇编优化过的Intra16x16的帧内预测函数。该函数的定义位于common\arm\predict-c.c(“arm”文件夹下),如下所示。
void x264_predict_16x16_init_arm( int cpu, x264_predict_t pf[7] ) { if (!(cpu&X264_CPU_NEON)) return; #if !HIGH_BIT_DEPTH pf[I_PRED_16x16_DC ] = x264_predict_16x16_dc_neon; pf[I_PRED_16x16_DC_TOP] = x264_predict_16x16_dc_top_neon; pf[I_PRED_16x16_DC_LEFT]= x264_predict_16x16_dc_left_neon; pf[I_PRED_16x16_H ] = x264_predict_16x16_h_neon; pf[I_PRED_16x16_V ] = x264_predict_16x16_v_neon; pf[I_PRED_16x16_P ] = x264_predict_16x16_p_neon; #endif // !HIGH_BIT_DEPTH }
从源代码可以看出,针对Vertical预测模式,x264_predict_16x16_init_arm()初始化了经过NEON指令集优化的函数x264_predict_16x16_v_neon()。
x264_predict_16x16_v_neon()
x264_predict_16x16_v_neon()的定义位于common\arm\predict-a.S,如下所示。
/* * Intra16x16帧内预测Vertical模式-NEON * */ /* FDEC_STRIDE=32Bytes,为重建宏块一行像素的大小 */ /* R0存储16x16像素块地址 */ function x264_predict_16x16_v_neon sub r0, r0, #FDEC_STRIDE /* r0=r0-FDEC_STRIDE */ mov ip, #FDEC_STRIDE /* ip=32 */ /* VLD向量加载: 内存->NEON寄存器 */ /* d0,d1为64bit双字寄存器,共16Byte,在这里存储16x16块上方一行像素 */ vld1.64 {d0-d1}, [r0,:128], ip /* 将R0指向的数据从内存加载到d0和d1寄存器(64bit) */ /* r0=r0+ip */ .rept 16 /* 循环16次,一次处理1行 */ /* VST向量存储: NEON寄存器->内存 */ vst1.64 {d0-d1}, [r0,:128], ip /* 将d0和d1寄存器中的数据传递给R0指向的内存 */ /* r0=r0+ip */ .endr bx lr /* 子程序返回 */ endfunc
可以看出,x264_predict_16x16_v_neon()使用vld1.64指令载入16x16块上方的一行像素,然后在一个16次的循环中,使用vst1.64指令将该行像素值赋值给16x16块的每一行。
至此有关Intra16x16的Vertical帧内预测方式的源代码就分析完了。
Intra4x4帧内预测源代码
Intra4x4帧内预测模块的初始化函数是x264_predict_4x4_init()。该函数对x264_predict_t结构体中的函数指针进行了赋值。X264运行的过程中只要调用x264_predict_t的函数指针就可以完成相应的功能。
x264_predict_4x4_init()
x264_predict_4x4_init()用于初始化Intra4x4帧内预测汇编函数。该函数的定义位于common\predict.c,如下所示。
//Intra4x4帧内预测汇编函数初始化 void x264_predict_4x4_init( int cpu, x264_predict_t pf[12] ) { //9种Intra4x4预测方式 pf[I_PRED_4x4_V] = x264_predict_4x4_v_c; pf[I_PRED_4x4_H] = x264_predict_4x4_h_c; pf[I_PRED_4x4_DC] = x264_predict_4x4_dc_c; pf[I_PRED_4x4_DDL] = x264_predict_4x4_ddl_c; pf[I_PRED_4x4_DDR] = x264_predict_4x4_ddr_c; pf[I_PRED_4x4_VR] = x264_predict_4x4_vr_c; pf[I_PRED_4x4_HD] = x264_predict_4x4_hd_c; pf[I_PRED_4x4_VL] = x264_predict_4x4_vl_c; pf[I_PRED_4x4_HU] = x264_predict_4x4_hu_c; //这些是? pf[I_PRED_4x4_DC_LEFT]= x264_predict_4x4_dc_left_c; pf[I_PRED_4x4_DC_TOP] = x264_predict_4x4_dc_top_c; pf[I_PRED_4x4_DC_128] = x264_predict_4x4_dc_128_c; #if HAVE_MMX x264_predict_4x4_init_mmx( cpu, pf ); #endif #if HAVE_ARMV6 x264_predict_4x4_init_arm( cpu, pf ); #endif #if ARCH_AARCH64 x264_predict_4x4_init_aarch64( cpu, pf ); #endif }
从源代码可看出,x264_predict_4x4_init()首先对帧内预测函数指针数组x264_predict_t[]中的元素赋值了C语言版本的函数x264_predict_4x4_v_c(),x264_predict_4x4_h_c(),x264_predict_4x4_dc_c(),x264_predict_4x4_p_c()等一系列函数(Intra4x4有9种,后面那几种是怎么回事?);然后会判断系统平台的特性,如果平台支持的话,会调用x264_predict_4x4_init_mmx(),x264_predict_4x4_init_arm()等给x264_predict_t[]中的元素赋值经过汇编优化的函数。下面看一下Intra4x4帧内预测中Vertical、Horizontal、DC模式的C语言版本函数。
x264_predict_4x4_v_c()
x264_predict_4x4_v_c()实现了Intra4x4帧内预测Vertical模式。该函数的定义位于common\predict.c,如下所示。
void x264_predict_4x4_v_c( pixel *src ) { /* * Vertical预测方式 * |X1 X2 X3 X4 * --+----------- * |X1 X2 X3 X4 * |X1 X2 X3 X4 * |X1 X2 X3 X4 * |X1 X2 X3 X4 * */ /* * 宏展开后的结果如下所示 * 注:重建宏块缓存fdec_buf一行的数据量为32Byte * * (((x264_union32_t*)(&src[(0)+(0)*32]))->i) = * (((x264_union32_t*)(&src[(0)+(1)*32]))->i) = * (((x264_union32_t*)(&src[(0)+(2)*32]))->i) = * (((x264_union32_t*)(&src[(0)+(3)*32]))->i) = (((x264_union32_t*)(&src[(0)+(-1)*32]))->i); */ PREDICT_4x4_DC(SRC_X4(0,-1)); }
x264_predict_4x4_v_c()函数的函数体极其简单,只有一个宏定义“PREDICT_4x4_DC(SRC_X4(0,-1));”。如果把该宏展开后,可以看出它取了4x4块上面一行4个像素的值,然后分别赋值给4x4块的4行像素。
x264_predict_4x4_h_c()
x264_predict_4x4_h_c()实现了Intra4x4帧内预测Horizontal模式。该函数的定义位于common\predict.c,如下所示。
void x264_predict_4x4_h_c( pixel *src ) { /* * Horizontal预测方式 * | * --+----------- * X5|X5 X5 X5 X5 * X6|X6 X6 X6 X6 * X7|X7 X7 X7 X7 * X8|X8 X8 X8 X8 * */ /* * 宏展开后的结果如下所示 * 注:重建宏块缓存fdec_buf一行的数据量为32Byte * * 该代码就是把每行左边的值赋值给该行像素,一次赋值一行 * * (((x264_union32_t*)(&src[(0)+(0)*32]))->i)=((src[(-1)+(0)*32])*0x01010101U); * (((x264_union32_t*)(&src[(0)+(1)*32]))->i)=((src[(-1)+(1)*32])*0x01010101U); * (((x264_union32_t*)(&src[(0)+(2)*32]))->i)=((src[(-1)+(2)*32])*0x01010101U); * (((x264_union32_t*)(&src[(0)+(3)*32]))->i)=((src[(-1)+(3)*32])*0x01010101U); * * PIXEL_SPLAT_X4()的作用应该是把最后一个像素(最后8位)拷贝给前面3个像素(前24位) * 即把0x0100009F变成0x9F9F9F9F * 推导: * 前提是x占8bit(对应1个像素) * y=x*0x01010101 * =x*(0x00000001+0x00000100+0x00010000+0x01000000) * =x<<0+x<<8+x<<16+x<<24 * * const uint32_t v = (src[-1])*0x01010101U含义: * 每行把src[-1]中像素值例如0x02赋值给v.v取值为0x02020202 * src[-1]即16x16块左侧的值 * */ SRC_X4(0,0) = PIXEL_SPLAT_X4( SRC(-1,0) ); SRC_X4(0,1) = PIXEL_SPLAT_X4( SRC(-1,1) ); SRC_X4(0,2) = PIXEL_SPLAT_X4( SRC(-1,2) ); SRC_X4(0,3) = PIXEL_SPLAT_X4( SRC(-1,3) ); }
从源代码可以看出,x264_predict_4x4_h_c()首先取出4x4块每行左边的1个像素,复制4份后赋值给这一行像素。其中“PIXEL_SPLAT_X4()”的功能是取出变量低8位的数值复制4份到高24位。
x264_predict_4x4_dc_c()
x264_predict_4x4_dc_c()实现了Intra4x4帧内预测DC模式。该函数的定义位于common\predict.c,如下所示。
void x264_predict_4x4_dc_c( pixel *src ) { /* * DC预测方式 * |X1 X2 X3 X4 * --+----------- * X5| * X6| Y * X7| * X8| * * Y=(X1+X2+X3+X4+X5+X6+X7+X8)/8 */ /* * 宏展开后的结果如下所示 * 注:重建宏块缓存fdec_buf一行的数据量为32Byte * 注2:“+4”是为了四舍五入 * * uint32_t dc=(((src[(-1)+(0)*32] + src[(-1)+(1)*32] + src[(-1)+(2)*32] + src[(-1)+(3)*32] + * src[(0)+(-1)*32] + src[(1)+(-1)*32] + src[(2)+(-1)*32] + src[(3)+(-1)*32] + 4) >> 3)*0x01010101U) * * 一次赋值一行 * (((x264_union32_t*)(&src[(0)+(0)*32]))->i) = * (((x264_union32_t*)(&src[(0)+(1)*32]))->i) = * (((x264_union32_t*)(&src[(0)+(2)*32]))->i) = * (((x264_union32_t*)(&src[(0)+(3)*32]))->i) = dc; * */ pixel4 dc = PIXEL_SPLAT_X4( (SRC(-1,0) + SRC(-1,1) + SRC(-1,2) + SRC(-1,3) + SRC(0,-1) + SRC(1,-1) + SRC(2,-1) + SRC(3,-1) + 4) >> 3 ); PREDICT_4x4_DC( dc ); }
从源代码可以看出,x264_predict_4x4_dc_c()取出了4x4块左边和上边的8个像素,将它们的平均值赋值给4x4块中的每个像素。
像素计算源代码
像素计算模块的初始化函数是x264_pixel_init()。该函数对x264_pixel_function_t结构体中的函数指针进行了赋值。X264运行的过程中只要调用x264_pixel_function_t的函数指针就可以完成相应的功能。
x264_pixel_init()
x264_pixel_init()初始化像素值计算相关的汇编函数(包括SAD、SATD、SSD等)。该函数的定义位于common\pixel.c,如下所示。
/**************************************************************************** * x264_pixel_init: ****************************************************************************/ //SAD等和像素计算有关的函数 void x264_pixel_init( int cpu, x264_pixel_function_t *pixf ) { memset( pixf, 0, sizeof(*pixf) ); //初始化2个函数-16x16,16x8 #define INIT2_NAME( name1, name2, cpu ) \ pixf->name1[PIXEL_16x16] = x264_pixel_##name2##_16x16##cpu;\ pixf->name1[PIXEL_16x8] = x264_pixel_##name2##_16x8##cpu; //初始化4个函数-(16x16,16x8),8x16,8x8 #define INIT4_NAME( name1, name2, cpu ) \ INIT2_NAME( name1, name2, cpu ) \ pixf->name1[PIXEL_8x16] = x264_pixel_##name2##_8x16##cpu;\ pixf->name1[PIXEL_8x8] = x264_pixel_##name2##_8x8##cpu; //初始化5个函数-(16x16,16x8,8x16,8x8),8x4 #define INIT5_NAME( name1, name2, cpu ) \ INIT4_NAME( name1, name2, cpu ) \ pixf->name1[PIXEL_8x4] = x264_pixel_##name2##_8x4##cpu; //初始化6个函数-(16x16,16x8,8x16,8x8,8x4),4x8 #define INIT6_NAME( name1, name2, cpu ) \ INIT5_NAME( name1, name2, cpu ) \ pixf->name1[PIXEL_4x8] = x264_pixel_##name2##_4x8##cpu; //初始化7个函数-(16x16,16x8,8x16,8x8,8x4,4x8),4x4 #define INIT7_NAME( name1, name2, cpu ) \ INIT6_NAME( name1, name2, cpu ) \ pixf->name1[PIXEL_4x4] = x264_pixel_##name2##_4x4##cpu; #define INIT8_NAME( name1, name2, cpu ) \ INIT7_NAME( name1, name2, cpu ) \ pixf->name1[PIXEL_4x16] = x264_pixel_##name2##_4x16##cpu; //重新起个名字 #define INIT2( name, cpu ) INIT2_NAME( name, name, cpu ) #define INIT4( name, cpu ) INIT4_NAME( name, name, cpu ) #define INIT5( name, cpu ) INIT5_NAME( name, name, cpu ) #define INIT6( name, cpu ) INIT6_NAME( name, name, cpu ) #define INIT7( name, cpu ) INIT7_NAME( name, name, cpu ) #define INIT8( name, cpu ) INIT8_NAME( name, name, cpu ) #define INIT_ADS( cpu ) \ pixf->ads[PIXEL_16x16] = x264_pixel_ads4##cpu;\ pixf->ads[PIXEL_16x8] = x264_pixel_ads2##cpu;\ pixf->ads[PIXEL_8x8] = x264_pixel_ads1##cpu; //8个sad函数 INIT8( sad, ); INIT8_NAME( sad_aligned, sad, ); //7个sad函数-一次性计算3次 INIT7( sad_x3, ); //7个sad函数-一次性计算4次 INIT7( sad_x4, ); //8个ssd函数 //ssd可以用来计算PSNR INIT8( ssd, ); //8个satd函数 //satd计算的是经过Hadamard变换后的值 INIT8( satd, ); //8个satd函数-一次性计算3次 INIT7( satd_x3, ); //8个satd函数-一次性计算4次 INIT7( satd_x4, ); INIT4( hadamard_ac, ); INIT_ADS( ); pixf->sa8d[PIXEL_16x16] = x264_pixel_sa8d_16x16; pixf->sa8d[PIXEL_8x8] = x264_pixel_sa8d_8x8; pixf->var[PIXEL_16x16] = x264_pixel_var_16x16; pixf->var[PIXEL_8x16] = x264_pixel_var_8x16; pixf->var[PIXEL_8x8] = x264_pixel_var_8x8; pixf->var2[PIXEL_8x16] = x264_pixel_var2_8x16; pixf->var2[PIXEL_8x8] = x264_pixel_var2_8x8; //计算UV的 pixf->ssd_nv12_core = pixel_ssd_nv12_core; //计算SSIM pixf->ssim_4x4x2_core = ssim_4x4x2_core; pixf->ssim_end4 = ssim_end4; pixf->vsad = pixel_vsad; pixf->asd8 = pixel_asd8; pixf->intra_sad_x3_4x4 = x264_intra_sad_x3_4x4; pixf->intra_satd_x3_4x4 = x264_intra_satd_x3_4x4; pixf->intra_sad_x3_8x8 = x264_intra_sad_x3_8x8; pixf->intra_sa8d_x3_8x8 = x264_intra_sa8d_x3_8x8; pixf->intra_sad_x3_8x8c = x264_intra_sad_x3_8x8c; pixf->intra_satd_x3_8x8c = x264_intra_satd_x3_8x8c; pixf->intra_sad_x3_8x16c = x264_intra_sad_x3_8x16c; pixf->intra_satd_x3_8x16c = x264_intra_satd_x3_8x16c; pixf->intra_sad_x3_16x16 = x264_intra_sad_x3_16x16; pixf->intra_satd_x3_16x16 = x264_intra_satd_x3_16x16; //后面的初始化基本上都是汇编优化过的函数 #if HIGH_BIT_DEPTH #if HAVE_MMX if( cpu&X264_CPU_MMX2 ) { INIT7( sad, _mmx2 ); INIT7_NAME( sad_aligned, sad, _mmx2 ); INIT7( sad_x3, _mmx2 ); INIT7( sad_x4, _mmx2 ); INIT8( satd, _mmx2 ); INIT7( satd_x3, _mmx2 ); INIT7( satd_x4, _mmx2 ); INIT4( hadamard_ac, _mmx2 ); INIT8( ssd, _mmx2 ); INIT_ADS( _mmx2 ); pixf->ssd_nv12_core = x264_pixel_ssd_nv12_core_mmx2; pixf->var[PIXEL_16x16] = x264_pixel_var_16x16_mmx2; pixf->var[PIXEL_8x8] = x264_pixel_var_8x8_mmx2; #if ARCH_X86 pixf->var2[PIXEL_8x8] = x264_pixel_var2_8x8_mmx2; pixf->var2[PIXEL_8x16] = x264_pixel_var2_8x16_mmx2; #endif pixf->intra_sad_x3_4x4 = x264_intra_sad_x3_4x4_mmx2; pixf->intra_satd_x3_4x4 = x264_intra_satd_x3_4x4_mmx2; pixf->intra_sad_x3_8x8 = x264_intra_sad_x3_8x8_mmx2; pixf->intra_sad_x3_8x8c = x264_intra_sad_x3_8x8c_mmx2; pixf->intra_satd_x3_8x8c = x264_intra_satd_x3_8x8c_mmx2; pixf->intra_sad_x3_8x16c = x264_intra_sad_x3_8x16c_mmx2; pixf->intra_satd_x3_8x16c = x264_intra_satd_x3_8x16c_mmx2; pixf->intra_sad_x3_16x16 = x264_intra_sad_x3_16x16_mmx2; pixf->intra_satd_x3_16x16 = x264_intra_satd_x3_16x16_mmx2; } if( cpu&X264_CPU_SSE2 ) { INIT4_NAME( sad_aligned, sad, _sse2_aligned ); INIT5( ssd, _sse2 ); INIT6( satd, _sse2 ); pixf->satd[PIXEL_4x16] = x264_pixel_satd_4x16_sse2; pixf->sa8d[PIXEL_16x16] = x264_pixel_sa8d_16x16_sse2; pixf->sa8d[PIXEL_8x8] = x264_pixel_sa8d_8x8_sse2; #if ARCH_X86_64 pixf->intra_sa8d_x3_8x8 = x264_intra_sa8d_x3_8x8_sse2; pixf->sa8d_satd[PIXEL_16x16] = x264_pixel_sa8d_satd_16x16_sse2; #endif pixf->intra_sad_x3_4x4 = x264_intra_sad_x3_4x4_sse2; pixf->ssd_nv12_core = x264_pixel_ssd_nv12_core_sse2; pixf->ssim_4x4x2_core = x264_pixel_ssim_4x4x2_core_sse2; pixf->ssim_end4 = x264_pixel_ssim_end4_sse2; pixf->var[PIXEL_16x16] = x264_pixel_var_16x16_sse2; pixf->var[PIXEL_8x8] = x264_pixel_var_8x8_sse2; pixf->var2[PIXEL_8x8] = x264_pixel_var2_8x8_sse2; pixf->var2[PIXEL_8x16] = x264_pixel_var2_8x16_sse2; pixf->intra_sad_x3_8x8 = x264_intra_sad_x3_8x8_sse2; } //此处省略大量的X86、ARM等平台的汇编函数初始化代码 }
x264_pixel_init()的源代码非常的长,主要原因在于它把C语言版本的函数以及各种平台的汇编函数都写到一块了(不知道现在最新的版本是不是还是这样)。x264_pixel_init()包含了大量和像素计算有关的函数,包括SAD、SATD、SSD、SSIM等等。它的输入参数x264_pixel_function_t是一个结构体,其中包含了各种像素计算的函数接口。x264_pixel_function_t的定义如下所示。
typedef struct { x264_pixel_cmp_t sad[8]; x264_pixel_cmp_t ssd[8]; x264_pixel_cmp_t satd[8]; x264_pixel_cmp_t ssim[7]; x264_pixel_cmp_t sa8d[4]; x264_pixel_cmp_t mbcmp[8]; /* either satd or sad for subpel refine and mode decision */ x264_pixel_cmp_t mbcmp_unaligned[8]; /* unaligned mbcmp for subpel */ x264_pixel_cmp_t fpelcmp[8]; /* either satd or sad for fullpel motion search */ x264_pixel_cmp_x3_t fpelcmp_x3[7]; x264_pixel_cmp_x4_t fpelcmp_x4[7]; x264_pixel_cmp_t sad_aligned[8]; /* Aligned SAD for mbcmp */ int (*vsad)( pixel *, intptr_t, int ); int (*asd8)( pixel *pix1, intptr_t stride1, pixel *pix2, intptr_t stride2, int height ); uint64_t (*sa8d_satd[1])( pixel *pix1, intptr_t stride1, pixel *pix2, intptr_t stride2 ); uint64_t (*var[4])( pixel *pix, intptr_t stride ); int (*var2[4])( pixel *pix1, intptr_t stride1, pixel *pix2, intptr_t stride2, int *ssd ); uint64_t (*hadamard_ac[4])( pixel *pix, intptr_t stride ); void (*ssd_nv12_core)( pixel *pixuv1, intptr_t stride1, pixel *pixuv2, intptr_t stride2, int width, int height, uint64_t *ssd_u, uint64_t *ssd_v ); void (*ssim_4x4x2_core)( const pixel *pix1, intptr_t stride1, const pixel *pix2, intptr_t stride2, int sums[2][4] ); float (*ssim_end4)( int sum0[5][4], int sum1[5][4], int width ); /* multiple parallel calls to cmp. */ x264_pixel_cmp_x3_t sad_x3[7]; x264_pixel_cmp_x4_t sad_x4[7]; x264_pixel_cmp_x3_t satd_x3[7]; x264_pixel_cmp_x4_t satd_x4[7]; /* abs-diff-sum for successive elimination. * may round width up to a multiple of 16. */ int (*ads[7])( int enc_dc[4], uint16_t *sums, int delta, uint16_t *cost_mvx, int16_t *mvs, int width, int thresh ); /* calculate satd or sad of V, H, and DC modes. */ void (*intra_mbcmp_x3_16x16)( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_satd_x3_16x16) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_sad_x3_16x16) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_mbcmp_x3_4x4) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_satd_x3_4x4) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_sad_x3_4x4) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_mbcmp_x3_chroma)( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_satd_x3_chroma) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_sad_x3_chroma) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_mbcmp_x3_8x16c) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_satd_x3_8x16c) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_sad_x3_8x16c) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_mbcmp_x3_8x8c) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_satd_x3_8x8c) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_sad_x3_8x8c) ( pixel *fenc, pixel *fdec, int res[3] ); void (*intra_mbcmp_x3_8x8) ( pixel *fenc, pixel edge[36], int res[3] ); void (*intra_sa8d_x3_8x8) ( pixel *fenc, pixel edge[36], int res[3] ); void (*intra_sad_x3_8x8) ( pixel *fenc, pixel edge[36], int res[3] ); /* find minimum satd or sad of all modes, and set fdec. * may be NULL, in which case just use pred+satd instead. */ int (*intra_mbcmp_x9_4x4)( pixel *fenc, pixel *fdec, uint16_t *bitcosts ); int (*intra_satd_x9_4x4) ( pixel *fenc, pixel *fdec, uint16_t *bitcosts ); int (*intra_sad_x9_4x4) ( pixel *fenc, pixel *fdec, uint16_t *bitcosts ); int (*intra_mbcmp_x9_8x8)( pixel *fenc, pixel *fdec, pixel edge[36], uint16_t *bitcosts, uint16_t *satds ); int (*intra_sa8d_x9_8x8) ( pixel *fenc, pixel *fdec, pixel edge[36], uint16_t *bitcosts, uint16_t *satds ); int (*intra_sad_x9_8x8) ( pixel *fenc, pixel *fdec, pixel edge[36], uint16_t *bitcosts, uint16_t *satds ); } x264_pixel_function_t;
在x264_pixel_init()中定义了好几个宏,用于给x264_pixel_function_t结构体中的函数接口赋值。例如“INIT8( sad, )”用于给x264_pixel_function_t中的sad[8]赋值。该宏展开后的代码如下。
pixf->sad[PIXEL_16x16] = x264_pixel_sad_16x16; pixf->sad[PIXEL_16x8] = x264_pixel_sad_16x8; pixf->sad[PIXEL_8x16] = x264_pixel_sad_8x16; pixf->sad[PIXEL_8x8] = x264_pixel_sad_8x8; pixf->sad[PIXEL_8x4] = x264_pixel_sad_8x4; pixf->sad[PIXEL_4x8] = x264_pixel_sad_4x8; pixf->sad[PIXEL_4x4] = x264_pixel_sad_4x4; pixf->sad[PIXEL_4x16] = x264_pixel_sad_4x16;
“INIT8( ssd, )” 用于给x264_pixel_function_t中的ssd[8]赋值。该宏展开后的代码如下。
pixf->ssd[PIXEL_16x16] = x264_pixel_ssd_16x16; pixf->ssd[PIXEL_16x8] = x264_pixel_ssd_16x8; pixf->ssd[PIXEL_8x16] = x264_pixel_ssd_8x16; pixf->ssd[PIXEL_8x8] = x264_pixel_ssd_8x8; pixf->ssd[PIXEL_8x4] = x264_pixel_ssd_8x4; pixf->ssd[PIXEL_4x8] = x264_pixel_ssd_4x8; pixf->ssd[PIXEL_4x4] = x264_pixel_ssd_4x4; pixf->ssd[PIXEL_4x16] = x264_pixel_ssd_4x16;
“INIT8( satd, )” 用于给x264_pixel_function_t中的satd[8]赋值。该宏展开后的代码如下。
pixf->satd[PIXEL_16x16] = x264_pixel_satd_16x16; pixf->satd[PIXEL_16x8] = x264_pixel_satd_16x8; pixf->satd[PIXEL_8x16] = x264_pixel_satd_8x16; pixf->satd[PIXEL_8x8] = x264_pixel_satd_8x8; pixf->satd[PIXEL_8x4] = x264_pixel_satd_8x4; pixf->satd[PIXEL_4x8] = x264_pixel_satd_4x8; pixf->satd[PIXEL_4x4] = x264_pixel_satd_4x4; pixf->satd[PIXEL_4x16] = x264_pixel_satd_4x16;
下文打算分别记录SAD、SSD和SATD计算的函数x264_pixel_sad_4x4(),x264_pixel_ssd_4x4(),和x264_pixel_satd_4x4()。此外再记录一个一次性“批量”计算4个点的函数x264_pixel_sad_x4_4x4()。
x264_pixel_sad_4x4()
x264_pixel_sad_4x4()用于计算4x4块的SAD。该函数的定义位于common\pixel.c,如下所示。
static int x264_pixel_sad_4x4( pixel *pix1, intptr_t i_stride_pix1, pixel *pix2, intptr_t i_stride_pix2 ) { int i_sum = 0; for( int y = 0; y < 4; y++ ) //4个像素 { for( int x = 0; x < 4; x++ ) //4个像素 { i_sum += abs( pix1[x] - pix2[x] );//相减之后求绝对值,然后累加 } pix1 += i_stride_pix1; pix2 += i_stride_pix2; } return i_sum; }
可以看出x264_pixel_sad_4x4()将两个4x4图像块对应点相减之后,调用abs()求出绝对值,然后累加到i_sum变量上。
x264_pixel_sad_x4_4x4()
x264_pixel_sad_4x4()用于计算4个4x4块的SAD。该函数的定义位于common\pixel.c,如下所示。
static void x264_pixel_sad_x4_4x4( pixel *fenc, pixel *pix0, pixel *pix1,pixel *pix2, pixel *pix3, intptr_t i_stride, int scores[4] ) { scores[0] = x264_pixel_sad_4x4( fenc, 16, pix0, i_stride ); scores[1] = x264_pixel_sad_4x4( fenc, 16, pix1, i_stride ); scores[2] = x264_pixel_sad_4x4( fenc, 16, pix2, i_stride ); scores[3] = x264_pixel_sad_4x4( fenc, 16, pix3, i_stride ); }
可以看出,x264_pixel_sad_4x4()计算了起始点在pix0,pix1,pix2,pix3四个4x4的图像块和fenc之间的SAD,并将结果存储于scores[4]数组中。
x264_pixel_ssd_4x4()
x264_pixel_ssd_4x4()用于计算4x4块的SSD。该函数的定义位于common\pixel.c,如下所示。
static int x264_pixel_ssd_4x4( pixel *pix1, intptr_t i_stride_pix1, pixel *pix2, intptr_t i_stride_pix2 ) { int i_sum = 0; for( int y = 0; y < 4; y++ ) //4个像素 { for( int x = 0; x < 4; x++ ) //4个像素 { int d = pix1[x] - pix2[x]; //相减 i_sum += d*d; //平方之后,累加 } pix1 += i_stride_pix1; pix2 += i_stride_pix2; } return i_sum; }
可以看出x264_pixel_ssd_4x4()将两个4x4图像块对应点相减之后,取了平方值,然后累加到i_sum变量上。
x264_pixel_satd_4x4()
x264_pixel_satd_4x4()用于计算4x4块的SATD。该函数的定义位于common\pixel.c,如下所示。
//SAD(Sum of Absolute Difference)=SAE(Sum of Absolute Error)即绝对误差和 //SATD(Sum of Absolute Transformed Difference)即hadamard变换后再绝对值求和 // //为什么帧内模式选择要用SATD? //SAD即绝对误差和,仅反映残差时域差异,影响PSNR值,不能有效反映码流的大小。 //SATD即将残差经哈德曼变换的4x4块的预测残差绝对值总和,可以将其看作简单的时频变换,其值在一定程度上可以反映生成码流的大小。 //4x4的SATD static NOINLINE int x264_pixel_satd_4x4( pixel *pix1, intptr_t i_pix1, pixel *pix2, intptr_t i_pix2 ) { sum2_t tmp[4][2]; sum2_t a0, a1, a2, a3, b0, b1; sum2_t sum = 0; for( int i = 0; i < 4; i++, pix1 += i_pix1, pix2 += i_pix2 ) { a0 = pix1[0] - pix2[0]; a1 = pix1[1] - pix2[1]; b0 = (a0+a1) + ((a0-a1)<<BITS_PER_SUM); a2 = pix1[2] - pix2[2]; a3 = pix1[3] - pix2[3]; b1 = (a2+a3) + ((a2-a3)<<BITS_PER_SUM); tmp[i][0] = b0 + b1; tmp[i][1] = b0 - b1; } for( int i = 0; i < 2; i++ ) { HADAMARD4( a0, a1, a2, a3, tmp[0][i], tmp[1][i], tmp[2][i], tmp[3][i] ); a0 = abs2(a0) + abs2(a1) + abs2(a2) + abs2(a3); sum += ((sum_t)a0) + (a0>>BITS_PER_SUM); } return sum >> 1; }
可以看出x264_pixel_satd_4x4()调用了一个宏HADAMARD4()用于Hadamard变换的计算,并最终将两个像素块Hadamard变换后对应元素求差的绝对值之后,累加到sum变量上。
mbcmp_init()
Intra宏块帧内预测模式的分析函数x264_mb_analyse_intra()中并没有直接调用x264_pixel_function_t 中sad[]/satd[]的函数,而是调用了x264_pixel_function_t的mbcmp[]中的函数。mbcmp[]中实际上就是存储的sad[]/satd[]中的函数。mbcmp_init()函数通过参数决定了mbcmp[]使用sad[]还是satd[]。该函数的定义位于encoder\encoder.c,如下所示。
//决定了像素比较的时候用SAD还是SATD static void mbcmp_init( x264_t *h ) { //b_lossless一般为0 //主要看i_subpel_refine,大于1的话就使用SATD int satd = !h->mb.b_lossless && h->param.analyse.i_subpel_refine > 1; //sad或者satd赋值给mbcmp memcpy( h->pixf.mbcmp, satd ? h->pixf.satd : h->pixf.sad_aligned, sizeof(h->pixf.mbcmp) ); memcpy( h->pixf.mbcmp_unaligned, satd ? h->pixf.satd : h->pixf.sad, sizeof(h->pixf.mbcmp_unaligned) ); h->pixf.intra_mbcmp_x3_16x16 = satd ? h->pixf.intra_satd_x3_16x16 : h->pixf.intra_sad_x3_16x16; h->pixf.intra_mbcmp_x3_8x16c = satd ? h->pixf.intra_satd_x3_8x16c : h->pixf.intra_sad_x3_8x16c; h->pixf.intra_mbcmp_x3_8x8c = satd ? h->pixf.intra_satd_x3_8x8c : h->pixf.intra_sad_x3_8x8c; h->pixf.intra_mbcmp_x3_8x8 = satd ? h->pixf.intra_sa8d_x3_8x8 : h->pixf.intra_sad_x3_8x8; h->pixf.intra_mbcmp_x3_4x4 = satd ? h->pixf.intra_satd_x3_4x4 : h->pixf.intra_sad_x3_4x4; h->pixf.intra_mbcmp_x9_4x4 = h->param.b_cpu_independent || h->mb.b_lossless ? NULL : satd ? h->pixf.intra_satd_x9_4x4 : h->pixf.intra_sad_x9_4x4; h->pixf.intra_mbcmp_x9_8x8 = h->param.b_cpu_independent || h->mb.b_lossless ? NULL : satd ? h->pixf.intra_sa8d_x9_8x8 : h->pixf.intra_sad_x9_8x8; satd &= h->param.analyse.i_me_method == X264_ME_TESA; memcpy( h->pixf.fpelcmp, satd ? h->pixf.satd : h->pixf.sad, sizeof(h->pixf.fpelcmp) ); memcpy( h->pixf.fpelcmp_x3, satd ? h->pixf.satd_x3 : h->pixf.sad_x3, sizeof(h->pixf.fpelcmp_x3) ); memcpy( h->pixf.fpelcmp_x4, satd ? h->pixf.satd_x4 : h->pixf.sad_x4, sizeof(h->pixf.fpelcmp_x4) ); }
从mbcmp_init()的源代码可以看出,当i_subpel_refine取值大于1的时候,satd变量为1,此时后续代码中赋值给mbcmp[]相关的一系列函数指针的函数就是SATD函数;当i_subpel_refine取值小于等于1的时候,satd变量为0,此时后续代码中赋值给mbcmp[]相关的一系列函数指针的函数就是SAD函数。
至此有关x264中的Intra宏块分析模块的源代码就分析完毕了。
雷霄骅
leixiaohua1020@126.com
http://blog.csdn.net/leixiaohua1020