小白专场-多项式乘法与加法运算-c语言实现

时间:2021-07-28 21:24:04

一、题意理解

设计函数分别求两个一元多项式的乘积与和,例:

\[\text{已知以下两个多项式:} \\
\begin{align}
& 3x^4-5x^2+6x-2 \\
& 5x^{20}-7x^4+3x
\end{align}
\]

\[\text{多项式和为:} \\
\begin{align}
5x^{20}-4x^4-5x^2+9x-2
\end{align}
\]

假设多项式的乘积为\((a+b)(c+d)=ac+ad+bc+bd\),则多项式的乘积如下:

\[\begin{align}
15x^{24}-25x^{22}+30x^{21}-10x^{20}-21x^8+35x^6-33x^5+14x^4-15x^3+18x^2-6x
\end{align}
\]

通过上述题意理解,我们可以设计函数分别求两个一元多项式的乘积与和。

输入样例:

\[\begin{align}
& 3x^4-5x^2+6x-2 \quad --> \quad \text{4个}\,3\,4\,-5\,2\,6\,1\,-2\,0 \\
& 5x^{20}-7x^4+3x \quad --> \quad \text{3个}\,5\,20\,-7\,4\,3\,1 \\
\end{align} \\
\]

输出样例:

\[\begin{align}
& 15x^{24}-25x^{22}+30x^{21}-10x^{20}-21x^8+35x^6-33x^5+14x^4-15x^3+18x^2-6x \\
& 15 \, 24 \, -25 \, 22 \, 30 \, 21 \, -10 \, 20 \, -21 \, 8 \, 35 \, 6 \, -33 \, 5 \, 14 \, 4 \, -15 \, 3 \, 18 \, 2 \, -6 \, 1 \, 5 \, 20 \, -4 \, 4 \, -5 \, 2 \, 9 \, 1 \, -2 \, 0
\end{align}
\]

二、求解思路

  1. 多项式表示
  2. 程序框架
  3. 读多项式
  4. 加法实现
  5. 乘法实现
  6. 多项式输出

三、多项式的表示

仅表示非零项

3.1 数组

优点:编程简单、调试简单

缺点:需要事先确定数组大小

一种比较好的实现方法是:动态数组(动态更改数组的大小)

3.2 链表

优点:动态性强

缺点:编程略为复杂、调试比较困难

数据结构设计:

/* c语言实现 */

typedef struct PolyNode *Polynomial;
struct PolyNode{
int coef;
int expon;
Polynomial link;
}

小白专场-多项式乘法与加法运算-c语言实现

四、程序框架搭建

/* c语言实现 */

int main()
{
读入多项式1;
读入多项式2;
乘法运算并输出;
加法运算并输出;
return 0;
} int main()
{
Polynomial P1, P2, PP, PS; P1 = ReadPoly();
P2 = ReadPoly();
PP = Mult(P1, P2);
PrintPoly(PP);
PS = Add(P1, P2);
PrintPoly(PS); return 0;
}

需要设计的函数:

  • 读一个多项式
  • 两多项式相乘
  • 两多项式相加
  • 多项式输出

五、如何读入多项式

/* c语言实现 */

Polynomial ReadPoly()
{
...;
scanf("%d", &N);
...;
while (N--) {
scanf("%d %d", &c, &e);
Attach(c, e, &Rear);
}
...;
return P;
}

小白专场-多项式乘法与加法运算-c语言实现

Rear初值是多少?

两种处理方法:

  1. Rear初值为NULL:在Attach函数中根据Rear是否为NULL做不同处理

小白专场-多项式乘法与加法运算-c语言实现

  1. Rear指向一个空结点

小白专场-多项式乘法与加法运算-c语言实现

/* c语言实现 */

void Attach(int c, int e, Polynomial *pRear)
{
Polynomial P; P = (Polynomial)malloc(sizeof(struct PolyNode));
p->coef = c; /* 对新结点赋值 */
p->expon = e;
p->link = NULL;
(*pRear)->link = P;
(*pRear) = P; /* 修改pRear值 */

小白专场-多项式乘法与加法运算-c语言实现

/* c语言实现 */

Polynomial ReadPoly()
{
Polynomial P, Rear, t;
int c, e, N; scanf("%d", &N);
P = (Polynomial)malloc(sizeof(struct PolyNode)); // 链表头空结点
P->link = NULL;
Rear = P;
while (N--) {
scanf("%d %d", &c, &e);
Attach(c, e, &Rear); // 将当前项插入多项式尾部
}
t = P; P = P->link; free(t); // 删除临时生成的头结点
return P;
}

小白专场-多项式乘法与加法运算-c语言实现

六、如何将两个多项式相加

/* c语言实现 */

Polynomial Add(Polynomial P1, Polynomial P2)
{
...;
t1 = P1; t2 = P2;
P = (Polynomial)malloc(sizeof(struct PolyNode));
P->link = NULL;
Rear = P;
while (t1 && t2){
if (t1->expon == t2->expon){
...;
}
else if (t1->expon > t2->expon){
...;
}
else{
...;
}
}
while (t1){
...;
}
while (t2){
...;
}
...;
return P;
}

七、如何将两个多项式相乘

方法:

  1. 将乘法运算转换为加法运算

将P1当前项(ci, ei)乘P2多项式,再加到结果多项式里

/* c语言实现 */

t1 = P1; t2 = P2;
P = (Polynomial)malloc(sizeof(struct PolyNode)); P->link = NULL;
Rear = P;
while (t2){
Attach(t1->coef * t2->coef, t1->expon + t2->expon, &Rear);
t2 = t2->link;
}
  1. 逐项插入

将P1当前项(c1_i, e1_i)乘P2当前项(c2_i, e2_i),并插入到结果多项式中。关键是要找到插入位置

初始结果多项式可由P1第一项乘P2获得(如上)

/* c语言实现 */

Polynomial Mult(Polynomial P1, Polynomial P2)
{
...;
t1 = P1; t2 = P2;
...;
while (t2){ // 先用P1的第一项乘以P2,得到P
...;
}
t1 = t1->link;
while (t1){
t2 = P2; Rear = P;
while (t2){
e = t1->expon + t2->expon;
c = t1->coef * t2->coef;
...;
t2 = t2->link;
}
t1 = t1->link;
}
...;
}
/* c语言实现 */

Polynomial Mult(Polynomial P1, Polynomial P2)
{
Polynomial P, Rear, t1, t2, t;
int c, e; if (!P1 || !P2) return NULL; t1 = P1; t2 = P2;
P = (Polynomial)malloc(sizeof(struct PolyNOde)); P->link = NULL;
Rear = P;
while (t2){ // 先用P1的第一项乘以P2,得到P
Attach(t1->coef * t2->coef, t1->expon + t2->expon, &Rear);
t2 = t2->link;
} t1 = t1->link;
while (t1){
t2 = P2; Rear = P;
while (t2){
e = t1->expon + t2->expon;
c = t1->coef * t2->coef;
...;
t2 = t2->link;
}
t1 = t1->link;
}
...;
}

小白专场-多项式乘法与加法运算-c语言实现

/* c语言实现 */

Polynomial Mult(Polynomial P1, Polynomial P2)
{
Polynomial P, Rear, t1, t2, t;
int c, e; if (!P1 || !P2) return NULL; t1 = P1; t2 = P2;
P = (Polynomial)malloc(sizeof(struct PolyNOde)); P->link = NULL;
Rear = P;
while (t2){ // 先用P1的第一项乘以P2,得到P
Attach(t1->coef * t2->coef, t1->expon + t2->expon, &Rear);
t2 = t2->link;
} t1 = t1->link;
while (t1) {
t2 = P2; Rear = P;
while (t2) {
e = t1->expon + t2->expon;
c = t2->coef * t2->coef;
while (Rear->link && Rear->link->expon > e)
Rear = Rear->link;
if (Rear->link && Rear->link->expon == e){
...;
}
else{
...;
}
t2 = t2->link;
}
t1 = t1->link;
}
...;
}

小白专场-多项式乘法与加法运算-c语言实现

/* c语言实现 */

Polynomial Mult(Polynomial P1, Polynomial P2)
{
Polynomial P, Rear, t1, t2, t;
int c, e; if (!P1 || !P2) return NULL; t1 = P1; t2 = P2;
P = (Polynomial)malloc(sizeof(struct PolyNOde)); P->link = NULL;
Rear = P;
while (t2){ // 先用P1的第一项乘以P2,得到P
Attach(t1->coef * t2->coef, t1->expon + t2->expon, &Rear);
t2 = t2->link;
} t1 = t1->link;
while (t1) {
t2 = P2; Rear = P;
while (t2) {
e = t1->expon + t2->expon;
c = t2->coef * t2->coef;
while (Rear->link && Rear->link->expon > e)
Rear = Rear->link;
if (Rear->link && Rear->link->expon == e){
if (Rear->link->coef + c)
Rear->link->coef += c;
else{
t = Rear->link;
Rear->link = t->link;
free(t);
}
}
else{
t = (Polynomial)malloc(sizeof(struct PolyNode));
t->coef = c; t->expon = e;
t->link = Rear->link;
Rear->link = t; Rear = Rear->link;
}
t2 = t2->link;
}
t1 = t1->link;
}
...;
}

小白专场-多项式乘法与加法运算-c语言实现

/* c语言实现 */

Polynomial Mult(Polynomial P1, Polynomial P2)
{
Polynomial P, Rear, t1, t2, t;
int c, e; if (!P1 || !P2) return NULL; t1 = P1; t2 = P2;
P = (Polynomial)malloc(sizeof(struct PolyNOde)); P->link = NULL;
Rear = P;
while (t2){ // 先用P1的第一项乘以P2,得到P
Attach(t1->coef * t2->coef, t1->expon + t2->expon, &Rear);
t2 = t2->link;
} t1 = t1->link;
while (t1) {
t2 = P2; Rear = P;
while (t2) {
e = t1->expon + t2->expon;
c = t2->coef * t2->coef;
while (Rear->link && Rear->link->expon > e)
Rear = Rear->link;
if (Rear->link && Rear->link->expon == e){
if (Rear->link->coef + c)
Rear->link->coef += c;
else{
t = Rear->link;
Rear->link = t->link;
free(t);
}
}
else{
t = (Polynomial)malloc(sizeof(struct PolyNode));
t->coef = c; t->expon = e;
t->link = Rear->link;
Rear->link = t; Rear = Rear->link;
}
t2 = t2->link;
}
t1 = t1->link;
}
t2 = P; P = P->link; free(t2);
return P;
}

八、如何将多项式输出

/* c语言实现 */

void PrintPoly(Polynomial P)
{
// 输出多项式
int flag = 0; // 辅助调整输出格式用,判断输出加法还是乘法 if (!P) {printf("0 0\n"); return ;} while (P) {
if (!flag)
flag = 1;
else
printf(" ");
printf("%d %d", P->coef, P->expon);
P = P->link;
}
printf("\n");
}