ServerBootstrap的构造:
public class ServerBootstrap extends AbstractBootstrap<ServerBootstrap, ServerChannel> {
private static final InternalLogger logger = InternalLoggerFactory.getInstance(ServerBootstrap.class);
private final Map<ChannelOption<?>, Object> childOptions = new LinkedHashMap();
private final Map<AttributeKey<?>, Object> childAttrs = new LinkedHashMap();
private final ServerBootstrapConfig config = new ServerBootstrapConfig(this);
private volatile EventLoopGroup childGroup;
private volatile ChannelHandler childHandler; public ServerBootstrap() {
}
......
}
隐式地执行了父类的无参构造:
public abstract class AbstractBootstrap<B extends AbstractBootstrap<B, C>, C extends Channel> implements Cloneable {
volatile EventLoopGroup group;
private volatile ChannelFactory<? extends C> channelFactory;
private volatile SocketAddress localAddress;
private final Map<ChannelOption<?>, Object> options = new LinkedHashMap();
private final Map<AttributeKey<?>, Object> attrs = new LinkedHashMap();
private volatile ChannelHandler handler; AbstractBootstrap() {
}
......
}
只是初始化了几个容器成员
在ServerBootstrap创建后,需要调用group方法,绑定EventLoopGroup,有关EventLoopGroup的创建在我之前博客中写过:Netty中NioEventLoopGroup的创建源码分析
ServerBootstrap的group方法:
public ServerBootstrap group(EventLoopGroup group) {
return this.group(group, group);
} public ServerBootstrap group(EventLoopGroup parentGroup, EventLoopGroup childGroup) {
super.group(parentGroup);
if (childGroup == null) {
throw new NullPointerException("childGroup");
} else if (this.childGroup != null) {
throw new IllegalStateException("childGroup set already");
} else {
this.childGroup = childGroup;
return this;
}
}
首先调用父类的group方法绑定parentGroup:
public B group(EventLoopGroup group) {
if (group == null) {
throw new NullPointerException("group");
} else if (this.group != null) {
throw new IllegalStateException("group set already");
} else {
this.group = group;
return this.self();
}
} private B self() {
return this;
}
将传入的parentGroup绑定给AbstractBootstrap的group成员,将childGroup绑定给ServerBootstrap的childGroup成员。
group的绑定仅仅是交给了成员保存。
再来看看ServerBootstrap的channel方法,,是在AbstractBootstrap中实现的:
public B channel(Class<? extends C> channelClass) {
if (channelClass == null) {
throw new NullPointerException("channelClass");
} else {
return this.channelFactory((io.netty.channel.ChannelFactory)(new ReflectiveChannelFactory(channelClass)));
}
}
使用channelClass构建了一个ReflectiveChannelFactory对象:
public class ReflectiveChannelFactory<T extends Channel> implements ChannelFactory<T> {
private final Class<? extends T> clazz; public ReflectiveChannelFactory(Class<? extends T> clazz) {
if (clazz == null) {
throw new NullPointerException("clazz");
} else {
this.clazz = clazz;
}
} public T newChannel() {
try {
return (Channel)this.clazz.getConstructor().newInstance();
} catch (Throwable var2) {
throw new ChannelException("Unable to create Channel from class " + this.clazz, var2);
}
} public String toString() {
return StringUtil.simpleClassName(this.clazz) + ".class";
}
}
可以看到ReflectiveChannelFactory的作用就是通过反射机制,产生clazz的实例(这里以NioServerSocketChannel为例)。
在创建完ReflectiveChannelFactory对象后, 调用channelFactory方法:
public B channelFactory(io.netty.channel.ChannelFactory<? extends C> channelFactory) {
return this.channelFactory((ChannelFactory)channelFactory);
} public B channelFactory(ChannelFactory<? extends C> channelFactory) {
if (channelFactory == null) {
throw new NullPointerException("channelFactory");
} else if (this.channelFactory != null) {
throw new IllegalStateException("channelFactory set already");
} else {
this.channelFactory = channelFactory;
return this.self();
}
}
将刚才创建的ReflectiveChannelFactory对象交给channelFactory成员,用于后续服务端NioServerSocketChannel的创建。
再来看ServerBootstrap的childHandler方法:
public ServerBootstrap childHandler(ChannelHandler childHandler) {
if (childHandler == null) {
throw new NullPointerException("childHandler");
} else {
this.childHandler = childHandler;
return this;
}
}
还是交给了childHandler成员保存,可以看到上述这一系列的操作,都是为了填充ServerBootstrap,而ServerBootstrap真正的启动是在bind时:
ServerBootstrap的bind方法,在AbstractBootstrap中实现:
public ChannelFuture bind(int inetPort) {
return this.bind(new InetSocketAddress(inetPort));
} public ChannelFuture bind(String inetHost, int inetPort) {
return this.bind(SocketUtils.socketAddress(inetHost, inetPort));
} public ChannelFuture bind(InetAddress inetHost, int inetPort) {
return this.bind(new InetSocketAddress(inetHost, inetPort));
} public ChannelFuture bind(SocketAddress localAddress) {
this.validate();
if (localAddress == null) {
throw new NullPointerException("localAddress");
} else {
return this.doBind(localAddress);
}
}
可以看到首先调用了ServerBootstrap的validate方法,:
public ServerBootstrap validate() {
super.validate();
if (this.childHandler == null) {
throw new IllegalStateException("childHandler not set");
} else {
if (this.childGroup == null) {
logger.warn("childGroup is not set. Using parentGroup instead.");
this.childGroup = this.config.group();
} return this;
}
}
先调用了AbstractBootstrap的validate方法:
public B validate() {
if (this.group == null) {
throw new IllegalStateException("group not set");
} else if (this.channelFactory == null) {
throw new IllegalStateException("channel or channelFactory not set");
} else {
return this.self();
}
}
这个方法就是用来检查是否绑定了group和channel以及childHandler,所以在执行bind方法前,无论如何都要执行group、channel和childHandler方法。
实际的bind交给了doBind来完成:
private ChannelFuture doBind(final SocketAddress localAddress) {
final ChannelFuture regFuture = this.initAndRegister();
final Channel channel = regFuture.channel();
if (regFuture.cause() != null) {
return regFuture;
} else if (regFuture.isDone()) {
ChannelPromise promise = channel.newPromise();
doBind0(regFuture, channel, localAddress, promise);
return promise;
} else {
final AbstractBootstrap.PendingRegistrationPromise promise = new AbstractBootstrap.PendingRegistrationPromise(channel);
regFuture.addListener(new ChannelFutureListener() {
public void operationComplete(ChannelFuture future) throws Exception {
Throwable cause = future.cause();
if (cause != null) {
promise.setFailure(cause);
} else {
promise.registered();
AbstractBootstrap.doBind0(regFuture, channel, localAddress, promise);
}
}
});
return promise;
}
}
首先调用initAndRegister,完成ServerSocketChannel的创建以及注册:
final ChannelFuture initAndRegister() {
Channel channel = null; try {
channel = this.channelFactory.newChannel();
this.init(channel);
} catch (Throwable var3) {
if (channel != null) {
channel.unsafe().closeForcibly();
return (new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE)).setFailure(var3);
} return (new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE)).setFailure(var3);
} ChannelFuture regFuture = this.config().group().register(channel);
if (regFuture.cause() != null) {
if (channel.isRegistered()) {
channel.close();
} else {
channel.unsafe().closeForcibly();
}
} return regFuture;
}
首先调用channelFactory的newChannel通过反射机制构建Channel实例,也就是NioServerSocketChannel,
NioServerSocketChannel的无参构造:
public class NioServerSocketChannel extends AbstractNioMessageChannel implements ServerSocketChannel {
private static final SelectorProvider DEFAULT_SELECTOR_PROVIDER = SelectorProvider.provider(); public NioServerSocketChannel() {
this(newSocket(DEFAULT_SELECTOR_PROVIDER));
}
......
}
SelectorProvider 是JDK的,关于SelectorProvider在我之前的博客中有介绍:【Java】NIO中Selector的创建源码分析
在Windows系统下默认产生WindowsSelectorProvider,即DEFAULT_SELECTOR_PROVIDER,再来看看newSocket方法:
private static java.nio.channels.ServerSocketChannel newSocket(SelectorProvider provider) {
try {
return provider.openServerSocketChannel();
} catch (IOException var2) {
throw new ChannelException("Failed to open a server socket.", var2);
}
}
使用WindowsSelectorProvider创建了一个ServerSocketChannelImpl,其实看到这里就明白了,NioServerSocketChannel是为了封装JDK的ServerSocketChannel
接着调用另一个重载的构造:
public NioServerSocketChannel(java.nio.channels.ServerSocketChannel channel) {
super((Channel)null, channel, 16);
this.config = new NioServerSocketChannel.NioServerSocketChannelConfig(this, this.javaChannel().socket());
}
首先调用父类的三参构造,其中16对应的是JDK中SelectionKey的ACCEPT状态:
public static final int OP_ACCEPT = 1 << 4;
其父类的构造处于一条继承链上:
AbstractNioMessageChannel:
protected AbstractNioMessageChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
super(parent, ch, readInterestOp);
}
AbstractNioChannel:
protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
super(parent);
this.ch = ch;
this.readInterestOp = readInterestOp; try {
ch.configureBlocking(false);
} catch (IOException var7) {
try {
ch.close();
} catch (IOException var6) {
if (logger.isWarnEnabled()) {
logger.warn("Failed to close a partially initialized socket.", var6);
}
} throw new ChannelException("Failed to enter non-blocking mode.", var7);
}
}
AbstractChannel:
private final ChannelId id;
private final Channel parent;
private final Unsafe unsafe;
private final DefaultChannelPipeline pipeline; protected AbstractChannel(Channel parent) {
this.parent = parent;
this.id = this.newId();
this.unsafe = this.newUnsafe();
this.pipeline = this.newChannelPipeline();
}
在AbstractChannel中使用newUnsafe和newChannelPipeline分别创建了一个Unsafe和一个DefaultChannelPipeline对象,
在前面的博客介绍NioEventLoopGroup时候,在NioEventLoop的run方法中,每次轮询完调用processSelectedKeys方法时,都是通过这个unsafe根据SelectedKey来完成数据的读或写,unsafe是处理基础的数据读写
(unsafe在NioServerSocketChannel创建时,产生NioMessageUnsafe实例,在NioSocketChannel创建时产生NioSocketChannelUnsafe实例)
而pipeline的实现是一条双向责任链,负责处理unsafe提供的数据,进而进行用户的业务逻辑 (Netty中的ChannelPipeline源码分析)
在AbstractNioChannel中调用configureBlocking方法给JDK的ServerSocketChannel设置为非阻塞模式,且让readInterestOp成员赋值为16用于未来注册ACCEPT事件。
在调用完继承链后回到NioServerSocketChannel构造,调用了javaChannel方法:
protected java.nio.channels.ServerSocketChannel javaChannel() {
return (java.nio.channels.ServerSocketChannel)super.javaChannel();
}
其实这个javaChannel就是刚才出传入到AbstractNioChannel中的ch成员:
protected SelectableChannel javaChannel() {
return this.ch;
}
也就是刚才创建的JDK的ServerSocketChannelImpl,用其socket方法,得到一个ServerSocket对象,然后产生了一个NioServerSocketChannelConfig对象,用于封装相关信息。
NioServerSocketChannel构建完毕,回到initAndRegister方法,使用刚创建的NioServerSocketChannel调用init方法,这个方法是在ServerBootstrap中实现的:
void init(Channel channel) throws Exception {
Map<ChannelOption<?>, Object> options = this.options0();
synchronized(options) {
setChannelOptions(channel, options, logger);
} Map<AttributeKey<?>, Object> attrs = this.attrs0();
synchronized(attrs) {
Iterator var5 = attrs.entrySet().iterator(); while(true) {
if (!var5.hasNext()) {
break;
} Entry<AttributeKey<?>, Object> e = (Entry)var5.next();
AttributeKey<Object> key = (AttributeKey)e.getKey();
channel.attr(key).set(e.getValue());
}
} ChannelPipeline p = channel.pipeline();
final EventLoopGroup currentChildGroup = this.childGroup;
final ChannelHandler currentChildHandler = this.childHandler;
Map var9 = this.childOptions;
final Entry[] currentChildOptions;
synchronized(this.childOptions) {
currentChildOptions = (Entry[])this.childOptions.entrySet().toArray(newOptionArray(0));
} var9 = this.childAttrs;
final Entry[] currentChildAttrs;
synchronized(this.childAttrs) {
currentChildAttrs = (Entry[])this.childAttrs.entrySet().toArray(newAttrArray(0));
} p.addLast(new ChannelHandler[]{new ChannelInitializer<Channel>() {
public void initChannel(final Channel ch) throws Exception {
final ChannelPipeline pipeline = ch.pipeline();
ChannelHandler handler = ServerBootstrap.this.config.handler();
if (handler != null) {
pipeline.addLast(new ChannelHandler[]{handler});
} ch.eventLoop().execute(new Runnable() {
public void run() {
pipeline.addLast(new ChannelHandler[]{new ServerBootstrap.ServerBootstrapAcceptor(ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs)});
}
});
}
}});
}
首先对attrs和options这两个成员进行了填充属性配置,这不是重点,然后获取刚才创建的NioServerSocketChannel的责任链pipeline,通过addLast将ChannelInitializer加入责任链,在ChannelInitializer中重写了initChannel方法,首先根据handler是否是null(这个handler是ServerBootstrap调用handler方法添加的,和childHandler方法不一样),若是handler不是null,将handler加入责任链,无论如何,都会异步将一个ServerBootstrapAcceptor对象加入责任链(后面会说为什么是异步)
这个ChannelInitializer的initChannel方法的执行需要等到后面注册时才会被调用,在后面pipeline处理channelRegistered请求时,此initChannel方法才会被执行 (Netty中的ChannelPipeline源码分析)
ChannelInitializer的channelRegistered方法:
public final void channelRegistered(ChannelHandlerContext ctx) throws Exception {
if (initChannel(ctx)) {
ctx.pipeline().fireChannelRegistered();
} else {
ctx.fireChannelRegistered();
}
}
首先调用initChannel方法(和上面的initChannel不是一个):
private boolean initChannel(ChannelHandlerContext ctx) throws Exception {
if (initMap.putIfAbsent(ctx, Boolean.TRUE) == null) {
try {
initChannel((C) ctx.channel());
} catch (Throwable cause) {
exceptionCaught(ctx, cause);
} finally {
remove(ctx);
}
return true;
}
return false;
}
可以看到,这个ChannelInitializer只会在pipeline中初始化一次,仅用于Channel的注册,在完成注册后,会调用remove方法将其从pipeline中移除:
remove方法:
private void remove(ChannelHandlerContext ctx) {
try {
ChannelPipeline pipeline = ctx.pipeline();
if (pipeline.context(this) != null) {
pipeline.remove(this);
}
} finally {
initMap.remove(ctx);
}
}
在移除前,就会回调用刚才覆盖的initChannel方法,异步向pipeline添加了ServerBootstrapAcceptor,用于后续的NioServerSocketChannel侦听到客户端连接后,完成在服务端的NioSocketChannel的注册。
回到initAndRegister,在对NioServerSocketChannel初始化完毕,接下来就是注册逻辑:
ChannelFuture regFuture = this.config().group().register(channel);
首先调用config().group(),这个就得到了一开始在ServerBootstrap的group方法传入的parentGroup,调用parentGroup的register方法,parentGroup是NioEventLoopGroup,这个方法是在子类MultithreadEventLoopGroup中实现的:
public ChannelFuture register(Channel channel) {
return this.next().register(channel);
}
首先调用next方法:
public EventLoop next() {
return (EventLoop)super.next();
}
实际上调用父类MultithreadEventExecutorGroup的next方法:
public EventExecutor next() {
return this.chooser.next();
}
关于chooser在我之前博客:Netty中NioEventLoopGroup的创建源码分析 介绍过,在NioEventLoopGroup创建时,默认会根据cpu个数创建二倍个NioEventLoop,而chooser就负责通过取模,每次选择一个NioEventLoop使用
所以在MultithreadEventLoopGroup的register方法实际调用了NioEventLoop的register方法:
NioEventLoop的register方法在子类SingleThreadEventLoop中实现:
public ChannelFuture register(Channel channel) {
return this.register((ChannelPromise)(new DefaultChannelPromise(channel, this)));
} public ChannelFuture register(ChannelPromise promise) {
ObjectUtil.checkNotNull(promise, "promise");
promise.channel().unsafe().register(this, promise);
return promise;
}
先把channel包装成ChannelPromise,默认是DefaultChannelPromise (Netty中的ChannelFuture和ChannelPromise),用于处理异步操作
调用重载方法,而在重载方法里,可以看到,实际上的register操作交给了channel的unsafe来实现:
unsafe的register方法在AbstractUnsafe中实现:
public final void register(EventLoop eventLoop, final ChannelPromise promise) {
if (eventLoop == null) {
throw new NullPointerException("eventLoop");
} else if (AbstractChannel.this.isRegistered()) {
promise.setFailure(new IllegalStateException("registered to an event loop already"));
} else if (!AbstractChannel.this.isCompatible(eventLoop)) {
promise.setFailure(new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName()));
} else {
AbstractChannel.this.eventLoop = eventLoop;
if (eventLoop.inEventLoop()) {
this.register0(promise);
} else {
try {
eventLoop.execute(new Runnable() {
public void run() {
AbstractUnsafe.this.register0(promise);
}
});
} catch (Throwable var4) {
AbstractChannel.logger.warn("Force-closing a channel whose registration task was not accepted by an event loop: {}", AbstractChannel.this, var4);
this.closeForcibly();
AbstractChannel.this.closeFuture.setClosed();
this.safeSetFailure(promise, var4);
}
} }
}
前面的判断做了一些检查就不细说了,直接看到else块
首先给当前Channel绑定了eventLoop,即通过刚才chooser选择的eventLoop,该Channel也就是NioServerSocketChannel
由于Unsafe的操作是在轮询线程中异步执行的,所里,这里需要判断inEventLoop是否处于轮询中
在之前介绍NioEventLoopGroup的时候说过,NioEventLoop在没有调用doStartThread方法时并没有启动轮询的,所以inEventLoop判断不成立
那么就调用eventLoop的execute方法,实际上的注册方法可以看到调用了AbstractUnsafe的register0方法,而将这个方法封装为Runnable交给eventLoop作为一个task去异步执行
先来看eventLoop的execute方法实现,是在NioEventLoop的子类SingleThreadEventExecutor中实现的:
public void execute(Runnable task) {
if (task == null) {
throw new NullPointerException("task");
} else {
boolean inEventLoop = this.inEventLoop();
this.addTask(task);
if (!inEventLoop) {
this.startThread();
if (this.isShutdown() && this.removeTask(task)) {
reject();
}
} if (!this.addTaskWakesUp && this.wakesUpForTask(task)) {
this.wakeup(inEventLoop);
} }
}
这里首先将task,即刚才的注册事件放入阻塞任务队列中,然后调用startThread方法:
private void startThread() {
if (this.state == 1 && STATE_UPDATER.compareAndSet(this, 1, 2)) {
try {
this.doStartThread();
} catch (Throwable var2) {
STATE_UPDATER.set(this, 1);
PlatformDependent.throwException(var2);
}
} }
NioEventLoop此时还没有轮询,所以状态是1,对应ST_NOT_STARTED,此时利用CAS操作,将状态修改为2,即ST_STARTED ,标志着NioEventLoop要启动轮询了,果然,接下来就调用了doStartThread开启轮询线程:
private void doStartThread() {
assert this.thread == null; this.executor.execute(new Runnable() {
public void run() {
SingleThreadEventExecutor.this.thread = Thread.currentThread();
if (SingleThreadEventExecutor.this.interrupted) {
SingleThreadEventExecutor.this.thread.interrupt();
} boolean success = false;
SingleThreadEventExecutor.this.updateLastExecutionTime();
boolean var112 = false; int oldState;
label1907: {
try {
var112 = true;
SingleThreadEventExecutor.this.run();
success = true;
var112 = false;
break label1907;
} catch (Throwable var119) {
SingleThreadEventExecutor.logger.warn("Unexpected exception from an event executor: ", var119);
var112 = false;
} finally {
if (var112) {
int oldStatex;
do {
oldStatex = SingleThreadEventExecutor.this.state;
} while(oldStatex < 3 && !SingleThreadEventExecutor.STATE_UPDATER.compareAndSet(SingleThreadEventExecutor.this, oldStatex, 3)); if (success && SingleThreadEventExecutor.this.gracefulShutdownStartTime == 0L && SingleThreadEventExecutor.logger.isErrorEnabled()) {
SingleThreadEventExecutor.logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " + SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called before run() implementation terminates.");
} try {
while(!SingleThreadEventExecutor.this.confirmShutdown()) {
;
}
} finally {
try {
SingleThreadEventExecutor.this.cleanup();
} finally {
SingleThreadEventExecutor.STATE_UPDATER.set(SingleThreadEventExecutor.this, 5);
SingleThreadEventExecutor.this.threadLock.release();
if (!SingleThreadEventExecutor.this.taskQueue.isEmpty() && SingleThreadEventExecutor.logger.isWarnEnabled()) {
SingleThreadEventExecutor.logger.warn("An event executor terminated with non-empty task queue (" + SingleThreadEventExecutor.this.taskQueue.size() + ')');
} SingleThreadEventExecutor.this.terminationFuture.setSuccess((Object)null);
}
} }
} do {
oldState = SingleThreadEventExecutor.this.state;
} while(oldState < 3 && !SingleThreadEventExecutor.STATE_UPDATER.compareAndSet(SingleThreadEventExecutor.this, oldState, 3)); if (success && SingleThreadEventExecutor.this.gracefulShutdownStartTime == 0L && SingleThreadEventExecutor.logger.isErrorEnabled()) {
SingleThreadEventExecutor.logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " + SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called before run() implementation terminates.");
} try {
while(!SingleThreadEventExecutor.this.confirmShutdown()) {
;
} return;
} finally {
try {
SingleThreadEventExecutor.this.cleanup();
} finally {
SingleThreadEventExecutor.STATE_UPDATER.set(SingleThreadEventExecutor.this, 5);
SingleThreadEventExecutor.this.threadLock.release();
if (!SingleThreadEventExecutor.this.taskQueue.isEmpty() && SingleThreadEventExecutor.logger.isWarnEnabled()) {
SingleThreadEventExecutor.logger.warn("An event executor terminated with non-empty task queue (" + SingleThreadEventExecutor.this.taskQueue.size() + ')');
} SingleThreadEventExecutor.this.terminationFuture.setSuccess((Object)null);
}
}
} do {
oldState = SingleThreadEventExecutor.this.state;
} while(oldState < 3 && !SingleThreadEventExecutor.STATE_UPDATER.compareAndSet(SingleThreadEventExecutor.this, oldState, 3)); if (success && SingleThreadEventExecutor.this.gracefulShutdownStartTime == 0L && SingleThreadEventExecutor.logger.isErrorEnabled()) {
SingleThreadEventExecutor.logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " + SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called before run() implementation terminates.");
} try {
while(!SingleThreadEventExecutor.this.confirmShutdown()) {
;
}
} finally {
try {
SingleThreadEventExecutor.this.cleanup();
} finally {
SingleThreadEventExecutor.STATE_UPDATER.set(SingleThreadEventExecutor.this, 5);
SingleThreadEventExecutor.this.threadLock.release();
if (!SingleThreadEventExecutor.this.taskQueue.isEmpty() && SingleThreadEventExecutor.logger.isWarnEnabled()) {
SingleThreadEventExecutor.logger.warn("An event executor terminated with non-empty task queue (" + SingleThreadEventExecutor.this.taskQueue.size() + ')');
} SingleThreadEventExecutor.this.terminationFuture.setSuccess((Object)null);
}
} }
});
}
关于doStartThread方法,我在 Netty中NioEventLoopGroup的创建源码分析 中已经说的很细了,这里就不再一步一步分析了
因为此时还没真正意义上的启动轮询,所以thread等于null成立的,然后调用executor的execute方法,这里的executor是一个线程池,在之前说过的,所以里面的run方法是处于一个线程里面的,然后给thread成员赋值为当前线程,表明正式进入了轮询。
而SingleThreadEventExecutor.this.run()才是真正的轮询逻辑,这在之前也说过,这个run的实现是在父类NioEventLoop中:
protected void run() {
while(true) {
while(true) {
try {
switch(this.selectStrategy.calculateStrategy(this.selectNowSupplier, this.hasTasks())) {
case -2:
continue;
case -1:
this.select(this.wakenUp.getAndSet(false));
if (this.wakenUp.get()) {
this.selector.wakeup();
}
default:
this.cancelledKeys = 0;
this.needsToSelectAgain = false;
int ioRatio = this.ioRatio;
if (ioRatio == 100) {
try {
this.processSelectedKeys();
} finally {
this.runAllTasks();
}
} else {
long ioStartTime = System.nanoTime();
boolean var13 = false; try {
var13 = true;
this.processSelectedKeys();
var13 = false;
} finally {
if (var13) {
long ioTime = System.nanoTime() - ioStartTime;
this.runAllTasks(ioTime * (long)(100 - ioRatio) / (long)ioRatio);
}
} long ioTime = System.nanoTime() - ioStartTime;
this.runAllTasks(ioTime * (long)(100 - ioRatio) / (long)ioRatio);
}
}
} catch (Throwable var21) {
handleLoopException(var21);
} try {
if (this.isShuttingDown()) {
this.closeAll();
if (this.confirmShutdown()) {
return;
}
}
} catch (Throwable var18) {
handleLoopException(var18);
}
}
}
}
首先由于task已经有一个了,就是刚才的注册事件,所以选择策略calculateStrategy最终调用selectNow(也是之前说过的):
private final IntSupplier selectNowSupplier = new IntSupplier() {
public int get() throws Exception {
return NioEventLoop.this.selectNow();
}
}; int selectNow() throws IOException {
int var1;
try {
var1 = this.selector.selectNow();
} finally {
if (this.wakenUp.get()) {
this.selector.wakeup();
} } return var1;
}
使用JDK原生Selector进行selectNow,由于此时没有任何Channel的注册,所以selectNow会立刻返回0,此时就进入default逻辑,由于没有任何注册,processSelectedKeys方法也做不了什么,所以在这一次的轮询实质上只进行了runAllTasks方法,此方法会执行阻塞队列中的task的run方法(还是在之前博客中介绍过),由于轮询是在线程池中的一个线程中运行的,所以task的执行是一个异步操作。(在执行完task,将task移除阻塞对立,线程继续轮询)
这时就可以回到AbstractChannel的register方法中了,由上面可以知道task实际上异步执行了:
AbstractUnsafe.this.register0(promise);
register0方法:
private void register0(ChannelPromise promise) {
try {
if (!promise.setUncancellable() || !this.ensureOpen(promise)) {
return;
} boolean firstRegistration = this.neverRegistered;
AbstractChannel.this.doRegister();
this.neverRegistered = false;
AbstractChannel.this.registered = true;
AbstractChannel.this.pipeline.invokeHandlerAddedIfNeeded();
this.safeSetSuccess(promise);
AbstractChannel.this.pipeline.fireChannelRegistered();
if (AbstractChannel.this.isActive()) {
if (firstRegistration) {
AbstractChannel.this.pipeline.fireChannelActive();
} else if (AbstractChannel.this.config().isAutoRead()) {
this.beginRead();
}
}
} catch (Throwable var3) {
this.closeForcibly();
AbstractChannel.this.closeFuture.setClosed();
this.safeSetFailure(promise, var3);
} }
可以看到实际上的注册逻辑又交给了AbstractChannel的doRegister,而这个方法在AbstractNioChannel中实现:
protected void doRegister() throws Exception {
boolean selected = false; while(true) {
try {
this.selectionKey = this.javaChannel().register(this.eventLoop().unwrappedSelector(), 0, this);
return;
} catch (CancelledKeyException var3) {
if (selected) {
throw var3;
} this.eventLoop().selectNow();
selected = true;
}
}
}
javaChannel就是之前产生的JDK的ServerSocketChannel,unwrappedSelector在之前说过,就是未经修改的JDK原生Selector,这个Selector和eventLoop是一对一绑定的,可以看到调用JDK原生的注册方法,完成了对ServerSocketChannel的注册,但是注册的是一个0状态(缺省值),而传入的this,即AbstractNioChannel对象作为了一个附件,用于以后processSelectedKeys方法从SelectionKey中得到对应的Netty的Channel(还是之前博客说过)
关于缺省值,是由于AbstractNioChannel不仅用于NioServerSocketChannel的注册,还用于NioSocketChannel的注册,只有都使用缺省值注册才不会产生异常 【Java】NIO中Channel的注册源码分析 ,并且,在以后processSelectedKeys方法会对0状态判断,再使用unsafe进行相应的逻辑处理。
在完成JDK的注册后,调用pipeline的invokeHandlerAddedIfNeeded方法(Netty中的ChannelPipeline源码分析),处理ChannelHandler的handlerAdded的回调,即调用用户添加的ChannelHandler的handlerAdded方法。
调用safeSetSuccess,标志异步操作完成:
protected final void safeSetSuccess(ChannelPromise promise) {
if (!(promise instanceof VoidChannelPromise) && !promise.trySuccess()) {
logger.warn("Failed to mark a promise as success because it is done already: {}", promise);
}
}
关于异步操作我在之前的博客中说的很清楚了:Netty中的ChannelFuture和ChannelPromise
接着调用pipeline的fireChannelRegistered方法,也就是在责任链上调用channelRegistered方法,这时,就会调用之在ServerBootstrap中向pipeline添加的ChannelInitializer的channelRegistered,进而回调initChannel方法,完成对ServerBootstrapAcceptor的添加。
回到register0方法,在处理完pipeline的责任链后,根据当前AbstractChannel即NioServerSocketChannel的isActive:
public boolean isActive() {
return this.javaChannel().socket().isBound();
}
获得NioServerSocketChannel绑定的JDK的ServerSocketChannel,进而获取ServerSocket,判断isBound:
public boolean isBound() {
// Before 1.3 ServerSockets were always bound during creation
return bound || oldImpl;
}
这里实际上就是判断ServerSocket是否调用了bind方法,前面说过register0方法是一个异步操作,在多线程环境下不能保证执行顺序,若是此时已经完成了ServerSocket的bind,根据firstRegistration判断是否需要pipeline传递channelActive请求,首先会执行pipeline的head即HeadContext的channelActive方法:
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
ctx.fireChannelActive(); readIfIsAutoRead();
}
在HeadContext通过ChannelHandlerContext 传递完channelActive请求后,会调用readIfIsAutoRead方法:
private void readIfIsAutoRead() {
if (channel.config().isAutoRead()) {
channel.read();
}
}
此时调用AbstractChannel的read方法:
public Channel read() {
pipeline.read();
return this;
}
最终在请求链由HeadContext执行read方法:
public void read(ChannelHandlerContext ctx) {
unsafe.beginRead();
}
终于可以看到此时调用unsafe的beginRead方法:
public final void beginRead() {
assertEventLoop(); if (!isActive()) {
return;
} try {
doBeginRead();
} catch (final Exception e) {
invokeLater(new Runnable() {
@Override
public void run() {
pipeline.fireExceptionCaught(e);
}
});
close(voidPromise());
}
}
最终执行了doBeginRead方法,由AbstractNioChannel实现:
protected void doBeginRead() throws Exception {
final SelectionKey selectionKey = this.selectionKey;
if (!selectionKey.isValid()) {
return;
} readPending = true; final int interestOps = selectionKey.interestOps();
if ((interestOps & readInterestOp) == 0) {
selectionKey.interestOps(interestOps | readInterestOp);
}
}
这里,就完成了向Selector注册readInterestOp事件,从前面来看就是ACCEPT事件
回到AbstractBootstrap的doBind方法,在initAndRegister逻辑结束后,由上面可以知道,实际上的register注册逻辑是一个异步操作,在register0中完成
根据ChannelFuture来判断异步操作是否完成,如果isDone,则表明异步操作先完成,即完成了safeSetSuccess方法,
然后调用newPromise方法:
public ChannelPromise newPromise() {
return pipeline.newPromise();
}
给channel的pipeline绑定异步操作ChannelPromise
然后调用doBind0方法完成ServerSocket的绑定,若是register0这个异步操作还没完成,就需要给ChannelFuture产生一个异步操作的侦听ChannelFutureListener对象,等到register0方法调用safeSetSuccess时,在promise的trySuccess中会回调ChannelFutureListener的operationComplete方法,进而调用doBind0方法
doBind0方法:
private static void doBind0(
final ChannelFuture regFuture, final Channel channel,
final SocketAddress localAddress, final ChannelPromise promise) {
channel.eventLoop().execute(new Runnable() {
@Override
public void run() {
if (regFuture.isSuccess()) {
channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
} else {
promise.setFailure(regFuture.cause());
}
}
});
}
向轮询线程提交了一个任务,异步处理bind,可以看到,只有在regFuture异步操作成功结束后,调用channel的bind方法:
public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
return pipeline.bind(localAddress, promise);
}
实际上的bind又交给pipeline,去完成,pipeline中就会交给责任链去完成,最终会交给HeadContext完成:
public void bind(
ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise)
throws Exception {
unsafe.bind(localAddress, promise);
}
可以看到,绕了一大圈,交给了unsafe完成:
public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
assertEventLoop(); if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
} if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&
localAddress instanceof InetSocketAddress &&
!((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&
!PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {
logger.warn(
"A non-root user can't receive a broadcast packet if the socket " +
"is not bound to a wildcard address; binding to a non-wildcard " +
"address (" + localAddress + ") anyway as requested.");
} boolean wasActive = isActive();
try {
doBind(localAddress);
} catch (Throwable t) {
safeSetFailure(promise, t);
closeIfClosed();
return;
} if (!wasActive && isActive()) {
invokeLater(new Runnable() {
@Override
public void run() {
pipeline.fireChannelActive();
}
});
} safeSetSuccess(promise);
}
然而,真正的bind还是回调了doBind方法,最终是由NioServerSocketChannel来实现:
@Override
protected void doBind(SocketAddress localAddress) throws Exception {
if (PlatformDependent.javaVersion() >= 7) {
javaChannel().bind(localAddress, config.getBacklog());
} else {
javaChannel().socket().bind(localAddress, config.getBacklog());
}
}
在这里终于完成了对JDK的ServerSocketChannel的bind操作
在上面的
if (!wasActive && isActive()) {
invokeLater(new Runnable() {
@Override
public void run() {
pipeline.fireChannelActive();
}
});
}
这个判断,就是确保在register0中isActive时,还没完成绑定,也就没有beginRead操作来向Selector注册ACCEPT事件,那么就在这里进行注册,进而让ServerSocket去侦听客户端的连接
在服务端ACCEPT到客户端的连接后,在NioEventLoop轮询中,就会调用processSelectedKeys处理ACCEPT的事件就绪,然后交给unsafe的read去处理 Netty中NioEventLoopGroup的创建源码分析
在服务端,由NioMessageUnsafe实现:
public void read() {
assert eventLoop().inEventLoop();
final ChannelConfig config = config();
final ChannelPipeline pipeline = pipeline();
final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
allocHandle.reset(config); boolean closed = false;
Throwable exception = null;
try {
try {
do {
int localRead = doReadMessages(readBuf);
if (localRead == 0) {
break;
}
if (localRead < 0) {
closed = true;
break;
} allocHandle.incMessagesRead(localRead);
} while (allocHandle.continueReading());
} catch (Throwable t) {
exception = t;
} int size = readBuf.size();
for (int i = 0; i < size; i ++) {
readPending = false;
pipeline.fireChannelRead(readBuf.get(i));
}
readBuf.clear();
allocHandle.readComplete();
pipeline.fireChannelReadComplete(); if (exception != null) {
closed = closeOnReadError(exception); pipeline.fireExceptionCaught(exception);
} if (closed) {
inputShutdown = true;
if (isOpen()) {
close(voidPromise());
}
}
} finally {
if (!readPending && !config.isAutoRead()) {
removeReadOp();
}
}
}
}
核心在doReadMessages方法,由NioServerSocketChannel实现:
protected int doReadMessages(List<Object> buf) throws Exception {
SocketChannel ch = SocketUtils.accept(javaChannel()); try {
if (ch != null) {
buf.add(new NioSocketChannel(this, ch));
return 1;
}
} catch (Throwable t) {
logger.warn("Failed to create a new channel from an accepted socket.", t); try {
ch.close();
} catch (Throwable t2) {
logger.warn("Failed to close a socket.", t2);
}
} return 0;
}
SocketUtils的accept方法其实就是用来调用JDK中ServerSocketChannel原生的accept方法,来得到一个JDK的SocketChannel对象,然后通过这个SocketChannel对象,将其包装成NioSocketChannel对象添加在buf这个List中
由此可以看到doReadMessages用来侦听所有就绪的连接,包装成NioSocketChannel将其放在List中
然后遍历这个List,调用 NioServerSocketChannel的pipeline的fireChannelRead方法,传递channelRead请求,、
在前面向pipeline中添加了ServerBootstrapAcceptor这个ChannelHandler,此时,它也会响应这个请求,回调channelRead方法:
public void channelRead(ChannelHandlerContext ctx, Object msg) {
final Channel child = (Channel) msg; child.pipeline().addLast(childHandler); setChannelOptions(child, childOptions, logger); for (Entry<AttributeKey<?>, Object> e: childAttrs) {
child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
} try {
childGroup.register(child).addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (!future.isSuccess()) {
forceClose(child, future.cause());
}
}
});
} catch (Throwable t) {
forceClose(child, t);
}
}
msg就是侦听到的NioSocketChannel对象,给该对象的pipeline添加childHandler,也就是我们在ServerBootstrap中通过childHandler方法添加的
然后通过register方法完成对NioSocketChannel的注册(和NioServerSocketChannel注册逻辑一样)
至此Netty服务端的启动结束。