SPSS数据分析—配对Logistic回归模型

时间:2022-07-01 21:06:01

Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现

在以下几个方面
1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同
2.常数项随着配对组变化而变化,反映了非实验因素在配对组中的作用,但是我们并不关心其大小,

因此在拟合时采用条件似然函数代替了一般似然函数,从而在拟合中消去了反映层因素的参数。

SPSS中没有直接拟合配对Logistic回归模型的过程,需要对数据进行一些处理,采用其他方法进行拟合,拟合方法有变量差值拟合和COX模型

一、变量差值拟合

只适用于1:1配对,通过求出同一对中案例组与对照组多有变量的差值,对差值进行不含常数项的无序多分类Logistic回归模型拟合来达到目的

例:收集了一组数据,希望分析服用雌激素与子宫内膜癌之间的关系,除了研究因素之外,还额外收

集了两个变量,数据为配对数据,1为病例,0为对照,case为是否患病,也就是因变量

SPSS数据分析—配对Logistic回归模型

采用变量差值进行拟合,首先求出所有变量之间的差值,可以使用计算变量过程,但是该过程每次只

能处理一个变量,比较麻烦,我们使用语法编辑器进行程序编写,如下
SPSS数据分析—配对Logistic回归模型
全部选中之后运行,在原数据中就会依次出现新生成的差值变量,接下来,我们对这些差值变量进行无序多分类Logistic回归

分析—回归—多项Logistic

SPSS数据分析—配对Logistic回归模型
SPSS数据分析—配对Logistic回归模型
SPSS数据分析—配对Logistic回归模型

==================================================

二、分层Cox模型
该方法最常用来进行生存函数估计,但是由于在拟合方法上和配对Logistic模型一致,因此也可以用来拟合配对Logistic回归模型,它不仅可以拟合1:1配对,还可以拟合1:r,n:m配对,应用范围比较广。

在数据组成上,和变量差值拟合有所不同,需要给每个个案一个虚拟生存时间,默认案例组比对照组生存时间段,具体值不限,两个时间差距大小也不限。案例发生算为失效事件,对照组为删失,并且对子号作为分层因素,我们还是通过变量差值拟合的案例来进行说明

我们将原数据调整如下
SPSS数据分析—配对Logistic回归模型

我们将原来并排排列的案例组和对照组合并为竖列,并且增加虚拟生存时间变量time,案例组为1,对照组为2,接下来按照Cox回归模型进行拟合

分析—生存函数—Cox回归

SPSS数据分析—配对Logistic回归模型

SPSS数据分析—配对Logistic回归模型