Hints of sd0061
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 2262 Accepted Submission(s): 673
There are n noobs in the team, the i-th of which has a rating ai. sd0061 prepares one hint for each contest. The hint for the j-th contest is a number bj, which means that the noob with the (bj+1)-th lowest rating is ordained by sd0061 for the j-th contest.
The coach asks constroy to make a list of contestants. constroy looks into these hints and finds out: bi+bj≤bk is satisfied if bi≠bj, bi<bk and bj<bk.
Now, you are in charge of making the list for constroy.
For each test case:
The first line contains five integers n,m,A,B,C. (1≤n≤107,1≤m≤100)
The second line contains m integers, the i-th of which is the number bi of the i-th hint. (0≤bi<n)
The n noobs' ratings are obtained by calling following function n times, the i-th result of which is ai.
unsigned x = A, y = B, z = C;
unsigned rng61() {
unsigned t;
x ^= x << 16;
x ^= x >> 5;
x ^= x << 1;
t = x;
x = y;
y = z;
z = t ^ x ^ y;
return z;
}
题意:给你一个长度为n的序列,序列由题面给的函数生成。然后m次询问,询问这个序列上第bi小的数。
解题思路:新学习了一个STL,C++中的nth_element(arr,arr+k,arr+n),将长度为n的数组arr进行划分,第k-1位置上就是第k大的数(下标从0开始算),这个函数近似线性,在找到第k大的时候,前k-1个数均是小于arr[k]的,因为输入保证任意两个小的之和小于第三个,所以查询数列的间隔一定大于等于斐波那契,所以从大到小查询的话,每次至少能去掉一半的区间,根据这个可以减少搜索量
hdu上要用G++交,C++超时
#include <iostream>
#include<cstdio>
#include<functional>
#include<cstring>
#include<algorithm>
using namespace std; unsigned a[];
struct node
{
int k,id;
}b[];
int n,m;
unsigned x, y, z; unsigned rng61() {
unsigned t;
x ^= x << ;
x ^= x >> ;
x ^= x << ;
t = x;
x = y;
y = z;
z = t ^ x ^ y;
return z;
}
bool cmp(node a,node b)
{
return a.k>b.k;
}
bool cmp2(node a,node b)
{
return a.id<b.id;
}
int main()
{
int cas=;
while(~scanf("%d%d%u%u%u",&n,&m,&x,&y,&z))
{
for(int i=;i<=m;i++)
{
scanf("%d",&b[i].k);
b[i].id=i;
}
for(int i=;i<n;i++) a[i]=rng61(); sort(b+,b++m,cmp);
b[].k=n;
for(int i=;i<=m;i++)
nth_element(a,a+b[i].k,a+b[i-].k);
sort(b+,b++m,cmp2); printf("Case #%d:",++cas);
for(int i=;i<=m;i++)
printf(" %u",a[b[i].k]);
printf("\n");
}
return ;
}