题目:https://www.luogu.org/problemnew/show/P4106
https://www.lydsy.com/JudgeOnline/problem.php?id=3614
可以先把给出的东西排序成这样:
-1 -1 -1
-1 -1 1
-1 1 -1
-1 1 1
1 -1 -1
1 -1 1
1 1 -1
1 1 1
就是后面看成低位、前面看成高位,1看成1、-1看成0的二进制的顺序。
发现把第1行和第2行相加再除以2,得到的就是与 x3 无关的所有系数 a 在 x1 = -1 , x2 = -1 的情况下的值;
第2行减第1行再除以2,得到的就是与 x3 有关的所有系数 a 在 x3 = 1 , x1 = -1 , x2 = -1 的情况下的值;
把所有行两个一组相加的答案放在一起考虑,就是所有与 x3 无关的系数在 x1 , x2 取 -1 , -1 ; -1 , 1 ; 1 , -1 ; 1 , 1 的情况下的值;相减的话就是 x1 , x2 取各种值,x3的值都是1的情况;这就是一个子问题了。
所有把所有行两个一组相加除以2的值放在前半部分,两个一组相减(下面减上面)除以2的值放在后半部分,大概就能做了。
最后第1行就是和所有 x 都无关的那个 a ,也就是常数项;第2行仔细考虑一下,是 x1 的系数。即,算出来的值在第 i 行的就是取 x 方案为 i ( i 就像状压了取哪些x乘起来的那一项)的项的系数。排序输出即可。
注意分数中途爆 int 。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int N=(<<)+,M=;
int n,bin[M],r[N]; char ch[M];
int gcd(int a,int b){return b?gcd(b,a%b):a;}
struct Node{
int x,y;
void yf()
{
if(!y||!x)return;
if(y<)y=-y,x=-x;
int g=gcd(x>?x:-x,y);x/=g;y/=g;
}
Node operator+ (const Node &b)const
{
Node c; c.y=(ll)y*b.y/gcd(y,b.y);
c.x=(ll)x*c.y/y+(ll)b.x*c.y/b.y;
c.yf(); return c;
}
Node operator- (const Node &b)const
{
Node u,v;u.x=x;u.y=y; v.x=b.x;v.y=-b.y;
return u+v;
}
}a[][N];
bool cmp(int a,int b)
{
for(int i=;i<n;i++)
{
if(!a)return true; if(!b)return false;
if((a&bin[i])&&(b&bin[i]))
{
a-=bin[i];b-=bin[i];continue;
}
if(!(a&bin[i])&&!(b&bin[i]))continue;
if(a&bin[i])return true; if(b&bin[i])return false;
}
}
void solve(int len)
{
for(int i=;i<len;i++)
if(i<r[i])swap(a[][i],a[][r[i]]);
for(int R=len,u=,v=;R>;R>>=,u=!u,v=!v)
{
int tot=-;//here
for(int i=;i<len;i+=R)
{
for(int j=;j<R;j+=)
{
a[u][++tot]=a[v][i+j]+a[v][i+j+];
a[u][tot].y*=; a[u][tot].yf();
}
for(int j=;j<R;j+=)
{
a[u][++tot]=a[v][i+j+]-a[v][i+j];
a[u][tot].y*=; a[u][tot].yf();
}
}
}
}
int main()
{
scanf("%d",&n);
bin[]=;for(int i=;i<=n;i++)bin[i]=bin[i-]<<;
for(int i=;i<bin[n];i++)r[i]=(r[i>>]>>)+((i&)?bin[n-]:);
for(int i=;i<bin[n];i++)
{
scanf("%s",ch);
long long d=;
for(int j=;j<n;j++)
d|=(ch[j]=='+'?bin[j]:);
double tmp; scanf("%lf",&tmp);
a[][d].x=(int)(tmp*+(tmp>?0.5:-0.5)); a[][d].y=;///round!
a[][d].yf();
}
solve(bin[n]);int fx=n&;
for(int i=;i<bin[n];i++)r[i]=i;
sort(r,r+bin[n],cmp);
for(int i=,u=r[];i<bin[n];i++,u=r[i])
if(a[fx][u].x)
{
printf("%d",a[fx][u].x);
if(a[fx][u].y>)printf("/%d",a[fx][u].y);
if(u)
{
putchar(' ');
for(int j=;j<n;j++)
if(u&bin[j])printf("x%d",j+);
}
puts("");
}
return ;
}
但这样空间在洛谷上能过, bzoj 上过不了。本来算下来就很大。
考虑不要把 a[ ] 开成滚动数组了。比如不要把两个一组相加的值放在前一半、相减的值放在后一半,而是把两行 i 和 i+1 相加的值放在第 i 行,相减的值放在第 i+1 行;这样就和 FWT 的模板长得更像,只开一个 a[ ] 而不用滚动也能应付过来。
考虑这样算了一次之后,下一次是哪里相加、相减。其实就相当于是原来的前一半,其间穿插上后一半的值;所以原来是前一半相邻两行再相加,现在就是隔一行相加;即原来是分治到前半部分和后半部分,现在是分治到奇数项和偶数项;这样下去就是 i 和 i+4 匹配、i 和 i+8 匹配……套上 FWT 的那个循环就行了。
仔细想一想,发现这样算出来,第1行是常数项,第2行是只和 x3 有关的项……也就是角标的二进制最低位是1表示有 x3 ,最高位是1表示有 x1 ……
如果一开始的排序是:
-1 -1 -1
1 -1 -1
-1 1 -1
1 1 -1
……
这样的话算出来的结果就是角标二进制最低位是1表示有x1……这样的。
输出可以写 dfs ,先搜这一位填1的,再搜这一位填0的;搜下一位之前输出一下,即每个方案在它填完最高位的1之后输出,如果是填了0就不输出,因为这个方案在最靠近的1被填了之后曾经输出过。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int N=(<<)+,M=;
int n,bin[M]; char ch[M];
int gcd(int a,int b){return b?gcd(b,a%b):a;}
struct Node{
int x,y;
void yf()
{
if(!y||!x)return;
if(y<)y=-y,x=-x;
int g=gcd(x>?x:-x,y);x/=g;y/=g;
}
Node operator+ (const Node &b)const
{
Node c; c.y=(ll)y*b.y/gcd(y,b.y);//ll
c.x=(ll)x*c.y/y+(ll)b.x*c.y/b.y;
// return c;
c.yf(); return c;
}
Node operator- (const Node &b)const
{
Node u,v;u.x=x;u.y=y; v.x=b.x;v.y=-b.y;
return u+v;
}
void print(int id)
{
if(!x)return;
yf();
if(y>)printf("%d/%d",x,y);
else printf("%d",x);
if(id)
{
putchar(' ');
for(int i=;i<n;i++)
if(id&bin[i])printf("x%d",i+);
}
puts("");
}
}a[N];
void dfs(int cr,int ml)
{
if(!cr||ml&bin[cr-]) a[ml].print(ml);
if(cr==n)return;
dfs(cr+,ml|bin[cr]);
dfs(cr+,ml);
}
int main()
{
scanf("%d",&n); int len=(<<n);
bin[]=;for(int i=;i<=n;i++)bin[i]=bin[i-]<<;
for(int i=;i<len;i++)
{
scanf("%s",ch);
int d=;
for(int j=;j<n;j++)
d|=(ch[j]=='+'?bin[j]:);
double tmp; scanf("%lf",&tmp);
a[d].x=round(tmp*); a[d].y=;
a[d].yf();
}
for(int R=;R<=len;R<<=)
{
for(int i=,m=R>>;i<len;i+=R)
for(int j=;j<m;j++)
{
Node x=a[i+j],y=a[i+m+j];
a[i+j]=x+y; a[i+m+j]=y-x;
a[i+j].y*=; a[i+j].yf();
a[i+m+j].y*=; a[i+m+j].yf();
}
}
dfs(,);
return ;
}