处理后的数据可直接放到hive或者mapreduce程序来统计网络数据流的信息,比如当前实现的是比较简单的http的Get请求的统计
第一个mapreduce:将时间、十六进制包头信息提取出来,并放在一行(这里涉及到mapreduce的键值对的对多行的特殊处理,是个值得注意的地方)
主要遇到两个问题:
一个数据包包含时间,包头的简单信息,包头的详细信息,初衷是想要把一个数据包的时间、包十六进制详细信息(存在于很多行里)按照顺序放置到一行,在java里面按行读取,很好实现。
针对mapreduce的键值对处理的特性,原来想到有两种方式解决:
(1)以时间的key值为准,一个包的信息key值与其相同
但MR的map每次只处理一行信息,而reduce只对键相同的行做处理,而且从map阶段到reduce的过程中有一个shuffle、sort阶段(估计是这个原因,也可能是因为离reduce近的机器处理完直接发给reduce,先到先处理),相同的key的value是乱序的。
(2)所有的key值递增
这样就没有相同的key值,无法放置到一行
最后的解决办法:
(3)以时间的key值为准,同一个包的信息的key值与其相同,但在十六进制行里加一个递增的id,放置到一行,虽然是乱序的,但自带ID,就重新排一下就好啦,妙!
第二个mapreduce: 对十六进制信息进行排序,是第一个mapreduce的补充,至此,清洗工作完毕,可以统计任意位置的十六进制来分析数据
第三个mapreduce:统计http发送的GET请求个数
static int id=1;
static int hexId=1;
public static class TokenizerMapper
extends Mapper<Object, Text, IntWritable, Text>
{
private final static IntWritable one = new IntWritable(2);
private Text word = new Text(); public void map(Object key, Text value, Context context
) throws IOException, InterruptedException
{
//匹配时间
String regexTime = "([0-2][0-4]):([0-5][0-9]):([0-5][0-9]).[0-9]{6}";// 11:08:56.149361
Pattern patternTime = Pattern.compile(regexTime);
Matcher matchTime = patternTime.matcher(value.toString());
while (matchTime.find()) {
String time ="time: " + matchTime.group()+" ";
id=id+1;
word.set(time);
one.set(id);
context.write(one, word);
}
//匹配十六进制
// String regexHex = "0x[0-9]{4}: ([A-Za-z0-9]{4} )+";
String regexHex = " ([A-Za-z0-9]{4} )+";
Pattern patternHex = Pattern.compile(regexHex);
Matcher matchHex = patternHex.matcher(value.toString());
while (matchHex.find()) {
String hex = " "+ matchHex.group();
hexId=hexId+1;
hex="id:"+String.valueOf(hexId)+" "+hex;
word.set(hex);
one.set(id);
context.write(one, word);
}
}
} public static class IntSumReducer
extends Reducer<IntWritable,Text,IntWritable,Text>
{
private Text result = new Text(); public void reduce(IntWritable key, Iterable<Text> values,
Context context
) throws IOException, InterruptedException
{
String sum = "";
for (Text val : values)
{
sum += val.toString();
}
result.set(sum);
context.write(key, result);
}
}
public static class TokenizerMapper
extends Mapper<Object, Text, Text, Text>
{
private final static Text one = new Text();
private Text word = new Text(); public void map(Object key, Text value, Context context
) throws IOException, InterruptedException
{
//匹配时间
String regexTime = "time: ([0-2][0-4]):([0-5][0-9]):([0-5][0-9]).[0-9]{6}";// 11:08:56.149361
Pattern patternTime = Pattern.compile(regexTime);
Matcher matchTime = patternTime.matcher(value.toString());
while (matchTime.find()) {
// String time ="time: " + matchTime.group()+" ";
String temptime =matchTime.group();
String time =temptime.substring(6, temptime.length()-1);
one.set(time);
} //排序十六进制
// String regexHex = "0x[0-9]{4}: ([A-Za-z0-9]{4} )+";
List<Bar> list = new ArrayList<Bar>();
String regexHex = "id:([0-9])+ ([A-Za-z0-9]{4} )+";
Pattern patternHex = Pattern.compile(regexHex);
Matcher matchHex = patternHex.matcher(value.toString());
while (matchHex.find()) {
Bar bar = new Bar();
String hexline = matchHex.group();
String regexHex2 ="id:([0-9])+"; //一行十六进制的序号
Pattern patternHex2 = Pattern.compile(regexHex2);
Matcher matchHex2 = patternHex2.matcher(hexline);
while (matchHex2.find()) {
String lineId=matchHex2.group().toString().substring(3);
bar.setId(lineId);
}
String regexHex3 ="([A-Za-z0-9]{4} )+"; //一行十六进制
Pattern patternHex3 = Pattern.compile(regexHex3);
Matcher matchHex3 = patternHex3.matcher(hexline);
while (matchHex3.find()) {
String lineHex= matchHex3.group().toString();
bar.setHexValue(lineHex);
}
list.add(bar);
} StringBuffer buffer = new StringBuffer("");
Collections.sort(list);
for(int i=0;i<list.size();i++){
Bar bar=list.get(i);
String lineHex=bar.getHexValue();
buffer.append(lineHex);
}
String hexOne= buffer.toString(); word.set(hexOne);
context.write(one, word);
}
} public static class IntSumReducer
extends Reducer<Text,Text,Text,Text>
{
private Text result = new Text(); public void reduce(Text key, Iterable<Text> values,
Context context
) throws IOException, InterruptedException
{
String sum = "";
for (Text val : values)
{
context.write(key, val);
}
}
}
public static class TokenizerMapper extends
Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text("sumGet"); public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
int timelen=15;
int getlen=20*5+timelen;
String strline=value.toString();
if (strline.length() > getlen) {// ||hexValue[20].equals("4854")
String getPos=strline.substring(timelen+20*5,timelen+21*5-1);
if(getPos.equals("4745")){
context.write(word, one);
}
}
}
} public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum =0;
for (IntWritable val : values) {
sum+=val.get();
}
result.set(sum);
context.write(key, result);
}
}