a^x=b(mod p)求x,利用分块的思想根号p的复杂度求答案,枚举同余式两端的变量,用hash的方法去找最小的答案(PS:hash看上去很像链式前向星就很有好感)。然后如果p不是质数时,就利用同余式的性质,把(a,p)的最大公约数除掉,然后把残缺的部分用一个d存一下,就可以转化为普通的BSGS了。这里那个在while中的特判b==d要不要我也不确定,加了肯定对。当然一个明确的特判是b==1时这时直接返回答案为0就OK。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<map>
#include<algorithm>
#include<vector>
#include<bitset>
#include<set>
#include<cstring>
#include<string>
#define ll long long
#define pb push_back
#define _mp make_pair
#define db double
using namespace std;
const int maxn=100007;
const int maxm=100005;
ll has[maxn];
ll fir[maxn],nxt[maxn],ans[maxn];
int tot;
ll a,b,p;
void add(ll x,ll k)
{
ll p=x%maxn;
ans[++tot]=k;nxt[tot]=fir[p];fir[p]=tot;
has[tot]=x;
}
ll query(ll x)
{
ll p=x%maxn;
for(int i=fir[p];i!=-1;i=nxt[i])
{
if(has[i]==x)return ans[i];
}
return -1;
}
ll bsgs(ll a,ll b,ll p)
{
if(b==1)return 0ll;
ll tmp=1,d=1,cnt=0;
while((tmp=__gcd(a,p))!=1)
{
if(b%tmp)return -1;
b/=tmp;p/=tmp;d=d*(a/tmp)%p;cnt++;
if(b==d)return cnt;//???
}
ll m=ceil(sqrt((double)p));
ll q=1;
for(ll i=0;i<m;i++)
{
add((q*b)%p,i);q=(q*a)%p;
}
for(ll i=m;i<=p+m;i+=m)
{
d=(d*q)%p;
ll tt=query(d);
if(tt!=-1)return i-tt+cnt;
}
return -1;
}
int main()
{
while(scanf("%lld%lld%lld",&a,&p,&b))
{
if(!p&&!a&&!b)return 0;
memset(fir,-1,sizeof(fir));
tot=0;
ll tt=bsgs(a,b,p);
if(tt==-1)printf("No Solution\n");
else printf("%lld\n",tt);
} }
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<map>
#include<algorithm>
#include<vector>
#include<bitset>
#include<set>
#include<cstring>
#include<string>
#define ll long long
#define pb push_back
#define _mp make_pair
#define db double
using namespace std;
const int maxn=1000007;
const int maxm=100005;
ll has[maxn];
int fir[maxn],nxt[maxn],ans[maxn];
int tot;
ll a,b,p;
void add(ll x,int k)
{
int p=x%maxn;
ans[++tot]=k;nxt[tot]=fir[p];fir[p]=tot;
has[tot]=x;
}
int query(ll x)
{
int p=x%maxn;
for(int i=fir[p];i!=-1;i=nxt[i])
{
if(has[i]==x)return ans[i];
}
return -1;
}
ll bsgs(ll a,ll b,ll p)
{
if(b==1)return 0ll;
ll m=ceil(sqrt((double)p));
ll q=1,x=1;
for(ll i=0;i<m;i++)
{
add((q*b)%p,i);q=(q*a)%p;
}
x=(x*q)%p;
for(ll i=m;i<=p;i+=m)
{
ll tt=query(x);
if(tt!=-1)return i-tt;
x=(x*q)%p;
}
return -1;
}
int main()
{
while(~scanf("%lld%lld%lld",&p,&a,&b))
{
memset(fir,-1,sizeof(fir));
tot=-1;
ll tt=bsgs(a,b,p);
if(tt==-1)printf("no solution\n");
else printf("%lld\n",tt);
} }