
2、论文模型CNN for P300 Detection

网络的第一层L0是输入层:输入样本是一个64x78的矩阵,64代表EEG信号通道数,78代表EEG信号在120HZ采样率下650ms的时域波形;在输入网络之前,样本数据进行预处理,使得每个通道信号的均值为零,方差为1。 第二层L1层实现了空域滤波的功能,用1x64的向量对输入样本进行卷积计算,实际就相当于对所有通道做加权平均。模型一共设计了10个空间滤波器,在网络进行反向传播训练时,滤波器可以自动学习出对应通道的权重大小。











第五层网络的输出是一个2维的向量,输出[1,0]时代表检测到P300波形,输出[0,1]代表网络没有检测到P300波形。
准确的说这个模型只是借鉴了卷积网络的感受野和权值共享两个概念,实际实现中没必要使用卷积计算(模型较简单,用到卷积的地方比较少,直接用矩阵乘法就能搞定了)。
3、实验结果


无法解释的是FP,FN的两个集合的样本——没有P300的样本集合FP经过叠加平均后,反而得到一个类似P300波形的信号(图中黑色虚线);有P300的样本集合FN的叠加平均却得到类似背景脑电和噪声的波形??一个可能的解释是论文中的TABLE 8Confusion of Character Recognition。
4、网络敏感输入(即网络提取出了这些特征波形)一共50个找不到解释有一些不是P300波形的特征






