Given an array A
, partition it into two (contiguous) subarrays left
and right
so that:
- Every element in
left
is less than or equal to every element inright
. -
left
andright
are non-empty. -
left
has the smallest possible size.
Return the length of left
after such a partitioning. It is guaranteed that such a partitioning exists.
Example 1:
Input: [5,0,3,8,6]
Output: 3
Explanation: left = [5,0,3], right = [8,6]
Example 2:
Input: [1,1,1,0,6,12]
Output: 4
Explanation: left = [1,1,1,0], right = [6,12]
Note:
2 <= A.length <= 30000
0 <= A[i] <= 10^6
- It is guaranteed there is at least one way to partition
A
as described.
Idea 1. max(nums[0]... nums[i]) <= min(nums[i+1],..nums[n-1]), build maxArray from left, minArray from right
Time comlexity: T(n)
Space complexity: T(n)
using index:
class Solution {
public int partitionDisjoint(int[] A) {
int[] maxIndex = new int[A.length];
for(int i = 1; i < A.length; ++i) {
if(A[i] > A[maxIndex[i-1]]) {
maxIndex[i] = i;
}
else {
maxIndex[i] = maxIndex[i-1];
}
} int[] minIndex = new int[A.length];
minIndex[A.length-1] = A.length-1;
for(int i = A.length-2; i >= 0; --i) {
if(A[i] < A[minIndex[i+1]]) {
minIndex[i] = i;
}
else {
minIndex[i] = minIndex[i+1];
}
} for(int i = 0; i < A.length-1; ++i) {
if(A[maxIndex[i]] <= A[minIndex[i+1]]) {
return i + 1;
}
} return 0;
}
}
No need to use index
class Solution {
public int partitionDisjoint(int[] A) {
int[] maxFromLeft = new int[A.length];
maxFromLeft[0] = A[0];
for(int i = 1; i < A.length; ++i) {
maxFromLeft[i] = Math.max(maxFromLeft[i-1], A[i]);
} int[] minFromRight = new int[A.length];
minFromRight[A.length-1] = A[A.length-1];
for(int i = A.length-2; i >= 0; --i) {
minFromRight[i] = Math.min(minFromRight[i+1], A[i]);
} for(int i = 0; i < A.length-1; ++i) {
if(maxFromLeft[i] <= minFromRight[i+1]) {
return i + 1;
}
} return 0;
}
}
Idea 2. 从讨论里看到的妙解,只需要保持2个变量,localMax记录有效partition里的最大值, maxSoFar记录遍历至今的最大值,nums[0]...nums[paritionIndex] (localMax) | [nums[partitonIndex]...nums[i-1]| (maxSoFar), 遍历到一个数nums[i],
paritionIndex 不变 if nums[i] >= localMax
paritionIndex = i, 需要包括nums[i], localMax也需要更新至maxSoFar
Time complexity: O(n)
Space complexity: O(1)
class Solution {
public int partitionDisjoint(int[] A) {
int localMax = A[0];
int maxSoFar = A[0];
int partitionIndex = 0;
for(int i = 1; i < A.length; ++i) {
if(A[i] < localMax) {
partitionIndex = i;
localMax = maxSoFar;
}
maxSoFar = Math.max(maxSoFar, A[i]);
} return partitionIndex + 1;
}
}