剑指Offer——二叉树
前言
数据结构通常是编程面试中考察的重点。在参加面试之前,应聘者需要熟练掌握链表、树、栈、队列和哈希表等数据结构,以及它们的操作。本片博文主要讲解二叉树操作的相关知识,主要包括二叉树的建立、遍历方法的循环和递归写法。
二叉树是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。
二叉树的java实现
首先创建一棵二叉树如下图,然后对这颗二叉树进行遍历操作(遍历操作的实现分为递归实现和非递归实现),同时还提供一些方法如获取双亲结点、获取左孩子、右孩子等。
package cn.edu.ujn.nk; import java.util.Stack; /** * 二叉树的链式存储 * @author WWX */ public class BinaryTree { private TreeNode root=null; public BinaryTree(){ root=new TreeNode(1,"rootNode(A)"); } /** * 创建一棵二叉树 * <pre> * A * B C * D E F * </pre> * @param root * @author WWX */ public void createBinTree(TreeNode root){ TreeNode newNodeB = new TreeNode(2,"B"); TreeNode newNodeC = new TreeNode(3,"C"); TreeNode newNodeD = new TreeNode(4,"D"); TreeNode newNodeE = new TreeNode(5,"E"); TreeNode newNodeF = new TreeNode(6,"F"); root.leftChild=newNodeB; root.rightChild=newNodeC; root.leftChild.leftChild=newNodeD; root.leftChild.rightChild=newNodeE; root.rightChild.rightChild=newNodeF; } public boolean isEmpty(){ return root==null; } //树的高度 public int height(){ return height(root); } //节点个数 public int size(){ return size(root); } private int height(TreeNode subTree){ if(subTree == null) return 0; // 递归结束:空树高度为0 else{ int i = height(subTree.leftChild); int j = height(subTree.rightChild); return (i < j) ? (j + 1) : (i + 1); } } private int size(TreeNode subTree){ if(subTree == null){ return 0; }else{ return 1 + size(subTree.leftChild) + size(subTree.rightChild); } } //返回双亲结点 public TreeNode parent(TreeNode element){ return (root == null|| root == element) ? null : parent(root, element); } public TreeNode parent(TreeNode subTree,TreeNode element){ if(subTree == null) return null; if(subTree.leftChild == element || subTree.rightChild == element) //返回父结点地址 return subTree; TreeNode p; // 先在左子树中找,如果左子树中没有找到,才到右子树去找 if((p = parent(subTree.leftChild, element)) != null) //递归在左子树中搜索 return p; else //递归在右子树中搜索 return parent(subTree.rightChild, element); } public TreeNode getLeftChildNode(TreeNode element){ return (element != null) ? element.leftChild : null; } public TreeNode getRightChildNode(TreeNode element){ return (element != null) ? element.rightChild : null; } public TreeNode getRoot(){ return root; } //在释放某个结点时,该结点的左右子树都已经释放, //所以应该采用后续遍历,当访问某个结点时将该结点的存储空间释放 public void destroy(TreeNode subTree){ //删除根为subTree的子树 if(subTree!=null){ //删除左子树 destroy(subTree.leftChild); //删除右子树 destroy(subTree.rightChild); //删除根结点 subTree=null; } } public void traverse(TreeNode subTree){ System.out.println("key:"+subTree.key+"--name:"+subTree.data);; traverse(subTree.leftChild); traverse(subTree.rightChild); } //前序遍历 public void preOrder(TreeNode subTree){ if(subTree!=null){ visted(subTree); preOrder(subTree.leftChild); preOrder(subTree.rightChild); } } //中序遍历 public void inOrder(TreeNode subTree){ if(subTree!=null){ inOrder(subTree.leftChild); visted(subTree); inOrder(subTree.rightChild); } } //后续遍历 public void postOrder(TreeNode subTree) { if (subTree != null) { postOrder(subTree.leftChild); postOrder(subTree.rightChild); visted(subTree); } } //前序遍历的非递归实现 public void nonRecPreOrder(TreeNode p){ Stack<TreeNode> stack=new Stack<TreeNode>(); TreeNode node=p; while(node!=null||stack.size()>0){ while(node!=null){ visted(node); stack.push(node); node=node.leftChild; } while(stack.size()>0){ node=stack.pop(); node=node.rightChild; } } } //中序遍历的非递归实现 public void nonRecInOrder(TreeNode p){ Stack<TreeNode> stack =new Stack<BinaryTree.TreeNode>(); TreeNode node =p; while(node!=null||stack.size()>0){ //存在左子树 while(node!=null){ stack.push(node); node=node.leftChild; } //栈非空 if(stack.size()>0){ node=stack.pop(); visted(node); node=node.rightChild; } } } //后序遍历的非递归实现 public void noRecPostOrder(TreeNode p){ Stack<TreeNode> stack=new Stack<BinaryTree.TreeNode>(); TreeNode node =p; while(p!=null){ //左子树入栈 for(;p.leftChild!=null;p=p.leftChild){ stack.push(p); } //当前结点无右子树或右子树已经输出 while(p!=null&&(p.rightChild==null||p.rightChild==node)){ visted(p); //纪录上一个已输出结点 node =p; if(stack.empty()) return; p=stack.pop(); } //处理右子树 stack.push(p); p=p.rightChild; } } public void visted(TreeNode subTree){ subTree.isVisted=true; System.out.println("key:"+subTree.key+"--name:"+subTree.data);; } /** * 二叉树的节点数据结构 * @author WWX */ private class TreeNode{ private int key = 0; private String data = null; private boolean isVisted = false; private TreeNode leftChild = null; private TreeNode rightChild = null; public TreeNode(){} /** * @param key 层序编码 * @param data 数据域 */ public TreeNode(int key,String data){ this.key = key; this.data = data; this.leftChild = null; this.rightChild = null; } } //测试 public static void main(String[] args) { BinaryTree bt = new BinaryTree(); bt.createBinTree(bt.root); System.out.println("the size of the tree is " + bt.size()); System.out.println("the height of the tree is " + bt.height()); System.out.println("***递归实现****(前序遍历)[ABDECF]遍历*****************"); bt.preOrder(bt.root); System.out.println("***递归实现****(中序遍历)[DBEACF]遍历*****************"); bt.inOrder(bt.root); System.out.println("***递归实现****(后序遍历)[DEBFCA]遍历*****************"); bt.postOrder(bt.root); System.out.println("***非递归实现****(前序遍历)[ABDECF]遍历*****************"); bt.nonRecPreOrder(bt.root); System.out.println("***非递归实现****(中序遍历)[DBEACF]遍历*****************"); bt.nonRecInOrder(bt.root); System.out.println("***非递归实现****(后序遍历)[DEBFCA]遍历*****************"); bt.noRecPostOrder(bt.root); } }
美文美图