题解:
分治好题
首先暴力显然rmq可以做到n^2
比较容易想到是以最值分治,这样在数据随机复杂度是nlogn,不随机还是n^2的
以最值分治只有做多与较小区间复杂度相同才是nlogn的
而这题里我们直接分治
想清楚再搞个暴力对拍还是比较好写的
代码:
#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for (rint i=h;i<=t;i++)
#define dep(i,t,h) for (rint i=t;i>=h;i--)
#define ll long long
#define mid ((h+t)>>1)
const int N=6e5;
const int mo=1e9;
int a[N],sum[N],sum2[N],sum3[N],sum4[N],sum5[N],sum6[N];
ll ans=;
void fz(int h,int t)
{
if (h==t)
{
ans=(ans+1ll*a[h]*a[h])%mo;
return;
}
int mina=a[mid],maxa=a[mid];
sum[mid+]=sum2[mid+]=sum3[mid+]=sum4[mid+]=;
dep(i,mid,h)
{
mina=min(a[i],mina);
maxa=max(a[i],maxa);
sum[i]=(sum[i+]+(1ll*mina*maxa)%mo*(mid-i+))%mo;
sum2[i]=(sum2[i+]+1ll*mina*maxa)%mo;
sum3[i]=(sum3[i+]+1ll*(mid-i+)*mina)%mo;
sum4[i]=(sum4[i+]+mina)%mo;
sum5[i]=(sum5[i+]+1ll*(mid-i+)*maxa)%mo;
sum6[i]=(sum6[i+]+maxa)%mo;
}
mina=a[mid],maxa=a[mid];
int pos1=mid,pos2=mid;
rep(i,mid,t)
{
mina=min(a[i],mina);
maxa=max(a[i],maxa);
while (a[pos1]>=mina&&pos1>=h) pos1--; pos1++;
while (a[pos2]<=maxa&&pos2>=h) pos2--; pos2++;
if (pos2<pos1)
{
ans+=(1ll*(*i-mid-pos1+)*(mid-pos1+)/)%mo*mina%mo*maxa%mo;
ans+=(sum3[pos2]-sum3[pos1]+1ll*(i-mid)*(sum4[pos2]-sum4[pos1]))%mo*maxa%mo;
ans+=(sum[h]-sum[pos2]+1ll*(i-mid)*(sum2[h]-sum2[pos2]))%mo;
ans%=mo;
} else
{
ans+=(1ll*(*i-mid-pos2+)*(mid-pos2+)/)%mo*mina%mo*maxa%mo;
ans+=(sum5[pos1]-sum5[pos2]+1ll*(i-mid)*(sum6[pos1]-sum6[pos2]))%mo*mina%mo;
ans+=(sum[h]-sum[pos1]+1ll*(i-mid)*(sum2[h]-sum2[pos1]))%mo;
ans%=mo;
}
}
if (h<=mid-) fz(h,mid-);
if (mid+<=t) fz(mid+,t);
}
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
ios::sync_with_stdio(false);
int n;
cin>>n;
rep(i,,n) cin>>a[i];
fz(,n);
cout<<ans<<endl;
return ;
}