Description
For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.
Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.
To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.
Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.
Input
* Line 1: Four space-separated integers: N, T, S, and E
* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i
Output
* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.
Sample Input
2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
Sample Output
10 题意:在无向图中有n条边,现在给出你一个起点S和一个终点E,让你求从S到E经过且仅K条边的最短路径。注意此题中K远大于n,如果K小于n的话直接一边广搜就过了,第一次没注意到这个条件敲了一个BFS,结果WA了。 思路:此题正解应该是矩阵乘法,但是重定义了,区别于线性代数里面的乘法(其实可以看出无论哪种定义,只要能推出矩阵在该定义下满足交换律即可,因为可以用快速幂来加速)。
设原图G对应的邻接矩阵为M,则M的k次幂中M[i][j]就表示从i点到j点经过k条边路径的个数!那么只需要重新定义一下矩阵乘法:M[i][j]表示从i点到j点的的最短路径长度,即M[i][j] = min(M[i][j],M[i][k]+M[k][j])(这个就是floyd算法的核心,DP思想),可以证明该定义满足交换律,因此可以用快速幂,考虑M^2,它表示从i到j经过2条边的最短路径,同理推出M^n表示从i到j经过n条边的最短路径,因此本题得解。
关于矩阵乘法的应用是参考2008年国家集训队论文《矩阵乘法在信息学中的应用》(俞华程)中看到的,网上此题解法大都参考该论文,在网上看了别人解释的没怎么看懂,直接看论文去了,发现论文里面讲的很明白也很透彻,但是经过别人转述意思可能就不一样了,其实我也说的不怎么清楚,所以建议直接去看论文。
网盘下载地址:http://yunpan.cn/QNeFIw2wIef4B (访问密码:7b0c)
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 111
using namespace std;
class Matrix{
public:
int m[MAXN][MAXN];
Matrix(){
memset(m, -, sizeof(m));
}
};
int N = ;
Matrix mtMul(Matrix A, Matrix B){
Matrix tmp;
for(int i = ;i < N;i ++)
for(int j = ;j < N;j ++)
for(int k = ;k < N;k ++){
if(A.m[i][k] == - || B.m[k][j] == -) continue;
int temp = A.m[i][k] + B.m[k][j];
if(tmp.m[i][j] == - || tmp.m[i][j] > temp) tmp.m[i][j] = temp;
}
return tmp;
}
Matrix mtPow(Matrix A, int k){
if(k == ) return A;
Matrix tmp = mtPow(A, k >> );
Matrix res = mtMul(tmp, tmp);
if(k & ) res = mtMul(res, A);
return res;
}
int main(){
int cnt[];
int n, t, s, e;
int u, v, w;
/* freopen("in.c", "r", stdin); */
while(~scanf("%d%d%d%d", &n, &t, &s, &e)){
N = ;
Matrix G;
memset(cnt, -, sizeof(cnt));
for(int i = ;i < t;i ++){
scanf("%d%d%d", &w, &u, &v);
if(cnt[u] == -) cnt[u] = N++;
if(cnt[v] == -) cnt[v] = N++;
G.m[cnt[u]][cnt[v]] = w;
G.m[cnt[v]][cnt[u]] = w;
}
Matrix tmp = mtPow(G, n);
printf("%d\n",tmp.m[cnt[s]][cnt[e]]);
}
return ;
}
另外附上BFS的错误代码:
#include<queue>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#define MAXN 1111
using namespace std;
class Status{
public:
int pre, w, cnt;
bool operator < (const Status &a) const{
return w < a.w;
}
};
typedef struct{
int to, next, w;
}Edge;
Edge edge[];
priority_queue<Status>q;
int head[MAXN], N, T, S, E;
void addedge(int u, int v, int w, int k){
edge[k].to = v;
edge[k].next = head[u];
edge[k].w = w;
head[u] = k++;
edge[k].to = u;
edge[k].next = head[v];
edge[k].w = w;
head[v] = k;
}
void bfs(int s){
while(!q.empty()) q.pop();
Status tmp;
tmp.pre = s;
tmp.w = tmp.cnt = ;
q.push(tmp);
while(!q.empty()){
Status p = q.top();
int v = p.pre;
q.pop();
for(int i = head[v]; ~i; i = edge[i].next){
int u = edge[i].to;
if(u == E && p.cnt+ == N){
printf("%d\n", p.w+edge[i].w);
return;
}else if(u != E){
Status t;
t.pre = u;
t.w = p.w+edge[i].w;
t.cnt = p.cnt+;
q.push(t);
}
}
}
}
int main(){
int length, u, v, k;
/* freopen("in.c", "r", stdin); */
while(~scanf("%d%d%d%d", &N, &T, &S, &E)){
memset(head, -, sizeof(head));
k = ;
for(int i = ; i < T; i ++){
scanf("%d%d%d", &length, &u, &v);
addedge(u, v, length, k);
k += ;
}
bfs(S);
}
return ;
}