浮点数在计算机中存储方式

时间:2021-07-16 19:22:59

<!-- /* Font Definitions */ @font-face{font-family:宋体;panose-1:2 1 6 0 3 1 1 1 1 1;mso-font-alt:SimSun;mso-font-charset:134;mso-generic-font-family:auto;mso-font-pitch:variable;mso-font-signature:3 135135232 16 0 262145 0;}@font-face{font-family:"/@宋体";panose-1:2 1 6 0 3 1 1 1 1 1;mso-font-charset:134;mso-generic-font-family:auto;mso-font-pitch:variable;mso-font-signature:3 135135232 16 0 262145 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal{mso-style-parent:"";margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;mso-pagination:none;font-size:10.5pt;mso-bidi-font-size:12.0pt;font-family:"Times New Roman";mso-fareast-font-family:宋体;mso-font-kerning:1.0pt;}a:link, span.MsoHyperlink{color:blue;text-decoration:underline;text-underline:single;}a:visited, span.MsoHyperlinkFollowed{color:purple;text-decoration:underline;text-underline:single;}p{mso-margin-top-alt:auto;margin-right:0cm;mso-margin-bottom-alt:auto;margin-left:0cm;mso-pagination:widow-orphan;font-size:12.0pt;font-family:宋体;mso-bidi-font-family:宋体;} /* Page Definitions */ @page{mso-page-border-surround-header:no;mso-page-border-surround-footer:no;}@page Section1{size:595.3pt 841.9pt;margin:72.0pt 90.0pt 72.0pt 90.0pt;mso-header-margin:42.55pt;mso-footer-margin:49.6pt;mso-paper-source:0;layout-grid:15.6pt;}div.Section1{page:Section1;} /* List Definitions */ @list l0{mso-list-id:503935423;mso-list-template-ids:-963866434;}@list l0:level1{mso-level-tab-stop:36.0pt;mso-level-number-position:left;text-indent:-18.0pt;}ol{margin-bottom:0cm;}ul{margin-bottom:0cm;}-->

浮点数在计算机中存储方式

2008-10-29 13:21

   C语言和C#语言中,对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用32bit,double数据占用64bit,我们在声明一个变量float f= 2.25f的时候,是如何分配内存的呢?如果胡乱分配,那世界岂不是乱套了么,其实不论是float还是double在存储方式上都是遵从IEEE的规范的,float遵从的是IEEE R32.24 ,double 遵从的是R64.53

    无论是单精度还是双精度在存储中都分为三个部分:

  1. 符号位(Sign) : 0代表正,1代表为负
  2. 指数位(Exponent:用于存储科学计数法中的指数数据,并且采用移位存储
  3. 尾数部分(Mantissa):尾数部分

其中float的存储方式如下图所示:

浮点数在计算机中存储方式

而双精度的存储方式为:

浮点数在计算机中存储方式

     R32.24R64.53的存储方式都是用科学计数法来存储数据的,比如8.25用十进制的科学计数法表示就为:8.25* 浮点数在计算机中存储方式,120.5可以表示为:1.205* 浮点数在计算机中存储方式,这些小学的知识就不用多说了吧。而我们傻蛋计算机根本不认识十进制的数据,他只认识01,所以在计算机存储中,首先要将上面的数更改为二进制的科学计数法表示,8.25用二进制表示可表示为1000.01,我靠,不会连这都不会转换吧?那我估计要没辙了。120.5用二进制表示为:1110110.1用二进制的科学计数法表示1000.01可以表示为1.0001* 浮点数在计算机中存储方式,1110110.1可以表示为1.1101101* 浮点数在计算机中存储方式,任何一个数都的科学计数法表示都为1.xxx* 浮点数在计算机中存储方式,尾数部分就可以表示为xxxx,第一位都是1嘛,干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了24bit,道理就是在这里,那24bit能精确到小数点后几位呢,我们知道9的二进制表示为1001,所以4bit能精确十进制中的1位小数点,24bit就能使float能精确到小数点后6位,而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围就应该为:-127-128了,所以指数部分的存储采用移位存储,存储的数据为元数据+127,下面就看看8.25120.5在内存中真正的存储方式。

     首先看下8.25,用二进制的科学计数法表示为:1.0001* 浮点数在计算机中存储方式

按照上面的存储方式,符号位为:0,表示为正,指数位为:3+127=130 ,位数部分为,8.25的存储方式如下图所示:

浮点数在计算机中存储方式

而单精度浮点数120.5的存储方式如下图所示:

浮点数在计算机中存储方式

那么如果给出内存中一段数据,并且告诉你是单精度存储的话,你如何知道该数据的十进制数值呢?其实就是对上面的反推过程,比如给出如下内存数据:0100001011101101000000000000,首先我们现将该数据分段,0 10000 0101 110 1101 0000 0000 0000 0000,在内存中的存储就为下图所示:

浮点数在计算机中存储方式

根据我们的计算方式,可以计算出,这样一组数据表示为:1.1101101* 浮点数在计算机中存储方式=120.5

而双精度浮点数的存储和单精度的存储大同小异,不同的是指数部分和尾数部分的位数。所以这里不再详细的介绍双精度的存储方式了,只将120.5的最后存储方式图给出,大家可以仔细想想为何是这样子的

浮点数在计算机中存储方式

下面我就这个基础知识点来解决一个我们的一个疑惑,请看下面一段程序,注意观察输出结果

            float f = 2.2f;
            double d = (double)f;
            Console.WriteLine(d.ToString("0.0000000000000"));
            f = 2.25f;
            d = (double)f;
            Console.WriteLine(d.ToString("0.0000000000000"));

可能输出的结果让大家疑惑不解,单精度的2.2转换为双精度后,精确到小数点后13位后变为了2.2000000476837,而单精度的2.25转换为双精度后,变为了2.2500000000000,为何2.2在转换后的数值更改了而2.25却没有更改呢?很奇怪吧?其实通过上面关于两种存储结果的介绍,我们已经大概能找到答案。首先我们看看2.25的单精度存储方式,很简单 0 1000 0001 001 0000 0000 0000 0000 0000,2.25的双精度表示为:0 100 0000 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000,这样2.25在进行强制转换的时候,数值是不会变的,而我们再看看2.2呢,2.2用科学计数法表示应该为:将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,所以0.282=0.4,所以二进制小数第一位为0.4的整数部分00.4×2=0.8,第二位为0,0.8*2=1.6,第三位为10.6×2 = 1.2,第四位为10.2*2=0.4,第五位为0,这样永远也不可能乘到=1.0,得到的二进制是一个无限循环的排列 00110011001100110011... ,对于单精度数据来说,尾数只能表示24bit的精度,所以2.2float存储为:

浮点数在计算机中存储方式

但是这样存储方式,换算成十进制的值,却不会是2.2的,应为十进制在转换为二进制的时候可能会不准确,如2.2,而double类型的数据也存在同样的问题,所以在浮点数表示中会产生些许的误差,在单精度转换为双精度的时候,也会存在误差的问题,对于能够用二进制表示的十进制数据,如2.25,这个误差就会不存在,所以会出现上面比较奇怪的输出结果。

本文属作者原创,只发布在博客园,希望大家在转载的时候,注明出处和作者,谢谢。

注:本文在写作过程中,参照了如下资料:

http://www.msdn.net/library/chs/default.asp?url=/library/CHS/vccore/html/_core_why_floating_point_numbers_may_lose_precision.asp

http://blog.csdn.net/ganxingming/archive/2006/12/19/1449526.aspx

浮点数的表示范围

2008-06-16 17:50

、浮点数的表示
  一个浮点数(Floating Point Number)由三个基本成分构成:符号(Sign)、阶码(Exponent)和尾数(Mantissa)。
  通常,可以用下面的格式来表示浮点数:

S

P

M

  其中S是符号位,P是阶码,M是尾数。
  根据IEEE(美国电气和电子工程师学会)754标准中的定义,单精度(Single Precision)浮点数是32位(即4字节)的,双精度(Double Precision)浮点数是64位(即8字节)的。两者的SPM所占的位数以及表示方法由下表可知:

 

S

P

M

表示公式

偏移量

单精度浮点数

1(第31位)

83023位)

23220位)

(-1)^S*2(P-127)*1.M

127

双精度浮点数

1(第63位)

116252位)

52510位)

(-1)^S*2(P-1023)*1.M

1023

  其中S是符号位,只有01,分别表示正负。
  P是阶码,通常使用移码表示(移码和补码只有符号位相反,其余都一样。对于正数而言,原码、反码和补码都一样;对于负数而言,补码就是其绝对值的原码全部取反,然后加1)。阶码可以为正数,也可以为负数,为了处理负指数的情况,实际的指数值按要求需要加上一个偏差(Bias)值作为保存在指数域中的值,单精度数的偏差值为127,双精度数的偏差值为1023。例如,单精度的实际指数值0在指数域中将保存为127,而保存在指数域中的64则表示实际的指数值-63,偏差的引入使得对于单精度数,实际可以表达的指数值的范围就变成-127128之间(包含两端)。
  M为尾数,其中单精度数为23位长,双精度数为52位长。IEEE标准要求浮点数必须是规范的。这意味着尾数的小数点左侧必须为1,因此在保存尾数的时候,可以省略小数点前面这个1,从而腾出一个二进制位来保存更多的尾数。这样实际上用23位长的尾数域表达了24位的尾数。例如对于单精度数而言,二进制的1001.101(对应于十进制的9.625)可以表达为1.001101 × 23,所以实际保存在尾数域中的值为00110100000000000000000,即去掉小数点左侧的1,并用0在右侧补齐。
  根据标准要求,无法精确保存的值必须向最接近的可保存的值进行舍入,即不足一半则舍,一半以上(包括一半)则进。不过对于二进制浮点数而言,还多一条规矩,就是当需要舍入的值刚好是一半时,不是简单地进,而是在前后两个等距接近的可保存的值中,取其中最后一位有效数字为零者。
  据以上分析,IEEE 754标准中定义浮点数的表示范围为:

 

二进制(Binary

十进制(Decimal

单精度浮点数

± (2-2^-23) × 2127

~ ± 10^38.53

双精度浮点数

± (2-2^-52) × 21023

~ ± 10^308.25

  浮点数的表示有一定的范围,超出范围时会产生溢出(Flow),一般称大于绝对值最大的数据为上溢(Overflow),小于绝对值最小的数据为下溢(Underflow)。
二、浮点数的表示约定
  单精度浮点数和双精度浮点数都是用IEEE 754标准定义的,其中有一些特殊约定,例如:
  1、当P=0M=0时,表示0
  2、当P=255M=0时,表示无穷大,用符号位来确定是正无穷大还是负无穷大。
  3、当P=255M≠0时,表示NaNNot a Number,不是一个数)。
三、非规范浮点数
  当两个绝对值极小的浮点数相减后,其差值的指数可能超出允许范围,最终只能近似为0。为了解决此类问题,IEEE标准中引入了非规范(Denormalized)浮点数,规定当浮点数的指数为允许的最小指数值时,尾数不必是规范化(Normalized)的。有了非规范浮点数,去掉了隐含的尾数位的制约,可以保存绝对值更小的浮点数。而且,由于不再受到隐含尾数域的制约,上述关于极小差值的问题也不存在了,因为所有可以保存的浮点数之间的差值同样可以保存。
  根据IEEE 754标准中的定义,规范和非规范浮点数的表示范围可归纳为下表:

 

规范浮点数

非规范浮点数

十进制近似范围

单精度浮点数

± 2^-149 (1-2^-23)*2^-126

± 2^-126 (2-2^-23)*2^127

± ~10^-44.85 ~10^38.53

双精度浮点数

± 2^-1074 (1-2^-52)*2^-1022

± 2^-1022 (2-2^-52)*2^1023

± ~10^-323.3 ~10^308.3

四、与IEEE 754相关的标准
  本文的结论基于IEEE 754标准,另外一个标准是IEEE 854,这个标准是关于十进制浮点数的,但没有规定具体格式,所以很少被采用。另外,从2000年开始,IEEE 754开始修订,被称为IEEE 754R,目的是融合IEEE 754IEEE 854标准。该标准在浮点格式方面的修订有:1、加入了16位和128位的二进制浮点数格式;2、加入了十进制浮点数格式,采用了IBM公司提出的格式。