本文将介绍Linux中AT24C02驱动。AT24C02是一种EEPROM,使用I2C接口来访问。
在开发板中,使用I2C控制器0和AT24C02连接,这里就不给出原理图了,如需要,可以搜索TQ2440开发板的原理图。
目标平台:TQ2440
CPU:s3c2440
内核版本:2.6.32
本文所有的代码均位于内核源码:linux/drivers/misc/eeprom/at24.c中。
1. 模块注册和注销
static int __init at24_init(void) { /* 将io_limit向下圆整到最近的2的幂*/ io_limit = rounddown_pow_of_two(io_limit); return i2c_add_driver(&at24_driver); /* i2c 驱动注册*/ } module_init(at24_init); static void __exit at24_exit(void) { i2c_del_driver(&at24_driver); } module_exit(at24_exit); MODULE_DESCRIPTION("Driver for most I2C EEPROMs"); MODULE_AUTHOR("David Brownell and Wolfram Sang"); MODULE_LICENSE("GPL");
注册函数很简单。io_limit为写入时允许一次写入的最大字节,该参数为驱动模块参数,可由用户设置,默认值为128字节。
首先对io_limit向下圆整到最近的2的幂,接着直接调用了i2c_add_driver来注册一个i2c驱动。
注销函数更简单。注销之前注册的i2c驱动。
2. 设备驱动绑定
熟悉I2C驱动架构的可能会知道I2C驱动的match函数,该函数将使用id表(struct i2c_device_id)和i2c设备(struct i2c_client)进行匹配,判断是否有name字段相同,如果相同则匹配完成,即可完成设备和驱动的绑定,接着便会调用驱动提供的probe方法。我们来看下驱动提供的id表。
static struct i2c_driver at24_driver = { .driver = { .name = "at24", .owner = THIS_MODULE, }, .probe = at24_probe, .remove = __devexit_p(at24_remove), .id_table = at24_ids, };驱动提供的id为at24_ids,如下:
static const struct i2c_device_id at24_ids[] = { /* needs 8 addresses as A0-A2 are ignored */ { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) }, /* old variants can't be handled with this generic entry! */ { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) }, { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) }, /* spd is a 24c02 in memory DIMMs */ { "spd", AT24_DEVICE_MAGIC(2048 / 8, AT24_FLAG_READONLY | AT24_FLAG_IRUGO) }, { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) }, /* 24rf08 quirk is handled at i2c-core */ { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) }, { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) }, { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) }, { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) }, { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) }, { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) }, { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) }, { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) }, { "at24", 0 }, { /* END OF LIST */ } };
结构体成员的第一个参数即为name,表示设备的名字。第二个参数,在该驱动中,为一个幻术(magic),通过AT24_DEVICE_MAGIC宏计算。
宏第一个参数为eeprom的大小,第二参数为一些标志位。我们看下这个宏:
#define AT24_SIZE_BYTELEN 5 #define AT24_SIZE_FLAGS 8 /* create non-zero magic value for given eeprom parameters */ #define AT24_DEVICE_MAGIC(_len, _flags) \ ((1 << AT24_SIZE_FLAGS | (_flags)) \ << AT24_SIZE_BYTELEN | ilog2(_len))
在这个表中,针对这里讲解的24c02,其大小为256字节,标志位为空。
3.probe函数
当i2c总线完成设备驱动绑定后,就会调用probe方法了。具体看下这个函数。
static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct at24_platform_data chip; bool writable; bool use_smbus = false; struct at24_data *at24; int err; unsigned i, num_addresses; kernel_ulong_t magic; /* 获取板级设备信息*/ if (client->dev.platform_data) { chip = *(struct at24_platform_data *)client->dev.platform_data; } else { /* 没有板级设备信息,也没有driver_data,直接出错*/ if (!id->driver_data) { err = -ENODEV; goto err_out; } magic = id->driver_data; chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN)); magic >>= AT24_SIZE_BYTELEN; chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS); /* * This is slow, but we can't know all eeproms, so we better * play safe. Specifying custom eeprom-types via platform_data * is recommended anyhow. */ chip.page_size = 1; chip.setup = NULL; chip.context = NULL; } /* 检查参数, byte_len和page_size必须为2的幂,不是则打印警告*/ if (!is_power_of_2(chip.byte_len)) dev_warn(&client->dev, "byte_len looks suspicious (no power of 2)!\n"); if (!is_power_of_2(chip.page_size)) dev_warn(&client->dev, "page_size looks suspicious (no power of 2)!\n"); /* Use I2C operations unless we're stuck with SMBus extensions. */ /* 检查是否支持I2C协议, 如果不支持,则检查是否使用SMBUS协议*/ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { /* 不支持I2C协议,但是使用16位地址,出错*/ if (chip.flags & AT24_FLAG_ADDR16) { err = -EPFNOSUPPORT; goto err_out; } /* 不支持I2C协议,使用8位地址, 但是不支持I2C_FUNC_SMBUS_READ_I2C_BLOCK,出错*/ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_I2C_BLOCK)) { err = -EPFNOSUPPORT; goto err_out; } use_smbus = true; /*使用 SMBUS协议*/ } /*是否使用8个地址,根据id表, 目前只有AT24C00使用8个地址,其他都为1个*/ if (chip.flags & AT24_FLAG_TAKE8ADDR) num_addresses = 8; else /* 24C02需要1个地址,24C04为2个,以此类推*/ num_addresses = DIV_ROUND_UP(chip.byte_len, (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256); /* 分配struct at24_data,同时根据地址个数分配struct i2c_client*/ at24 = kzalloc(sizeof(struct at24_data) + num_addresses * sizeof(struct i2c_client *), GFP_KERNEL); if (!at24) { err = -ENOMEM; goto err_out; } /* 初始化struct at24_data*/ mutex_init(&at24->lock); at24->use_smbus = use_smbus; at24->chip = chip; at24->num_addresses = num_addresses; /* * Export the EEPROM bytes through sysfs, since that's convenient. * By default, only root should see the data (maybe passwords etc) */ /* 设置bin_attribute字段,二进制文件名为eeprom, 通过它即可读写设备 */ at24->bin.attr.name = "eeprom"; at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR; at24->bin.read = at24_bin_read; at24->bin.size = chip.byte_len; at24->macc.read = at24_macc_read; /*** 先忽略***/ /* 判断设备是否可写*/ writable = !(chip.flags & AT24_FLAG_READONLY); if (writable) { if (!use_smbus || i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) { unsigned write_max = chip.page_size; at24->macc.write = at24_macc_write; /*** 先忽略***/ at24->bin.write = at24_bin_write; /* 写函数*/ at24->bin.attr.mode |= S_IWUSR; /* 文件拥有者可写*/ if (write_max > io_limit) /* 一次最多写io_limit个字节*/ write_max = io_limit; /* 如果使用smbus,对write_max检查*/ if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX) write_max = I2C_SMBUS_BLOCK_MAX; at24->write_max = write_max; /* buffer (data + address at the beginning) */ /* 分配写缓冲区,多余两个字节用于保存寄存器地址*/ at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL); if (!at24->writebuf) { err = -ENOMEM; goto err_struct; } } else { dev_warn(&client->dev, "cannot write due to controller restrictions."); } } at24->client[0] = client; /* 保存i2c设备client*/ /* use dummy devices for multiple-address chips */ /* 为其余设备地址注册一个dummy设备*/ for (i = 1; i < num_addresses; i++) { at24->client[i] = i2c_new_dummy(client->adapter, client->addr + i); /* 设备地址每次加1 */ if (!at24->client[i]) { dev_err(&client->dev, "address 0x%02x unavailable\n", client->addr + i); err = -EADDRINUSE; goto err_clients; } } /* 创建二进制属性*/ err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin); if (err) goto err_clients; i2c_set_clientdata(client, at24); /* 保存驱动数据*/ /* 打印设备信息*/ dev_info(&client->dev, "%zu byte %s EEPROM %s\n", at24->bin.size, client->name, writable ? "(writable)" : "(read-only)"); dev_dbg(&client->dev, "page_size %d, num_addresses %d, write_max %d%s\n", chip.page_size, num_addresses, at24->write_max, use_smbus ? ", use_smbus" : ""); /* export data to kernel code */ if (chip.setup) chip.setup(&at24->macc, chip.context); return 0; err_clients: for (i = 1; i < num_addresses; i++) if (at24->client[i]) i2c_unregister_device(at24->client[i]); kfree(at24->writebuf); err_struct: kfree(at24); }驱动首先获取板级设备信息(client->dev.platform_data),我们假设驱动移植时,添加了该板级设备信息。
判断是使用I2C协议还是SMBus协议。在这里,I2C adpater使用I2C协议。
然后,判断设备需要多少个i2c设备地址。
这里补充下:根据at24c02的datasheet,设备地址的第1位到第3位,将根据不同的设备来进行设置。
例如,如果是at24c04,则设备地址的第1位将用来表示寄存器地址,因为内存大小为512字节,而寄存器地址只有8位(256字节),
需要额外的一位用来表示512字节,因此使用了设备地址当中的一位来实现此目的。具体的请看datasheet。
这里使用at24c02,num_addresses将为1。
接着分配struct at24_data和struct i2c_client指针数组空间。
然后对struct at24_data进行了初始化工作。
接着,对二进制属性进行了配置。名字为eeprom,同时配置了其读方法(at24_bin_read),如果设备可写,还将配置其写方法(at24_bin_write)。
接下来很重要的一步,如果设备使用多个地址,则需要为所有地址(除了第一个地址)分配一个dummy device,这样这些地址就不会被其他的I2C设备占用了。
最后,向sys文件系统注册了二进制属性文件,通过该二进制文件,用户即可访问该设备。
注意:驱动使用了struct memory_accessor的东东,对这个东东不是太了解,所以先忽略,这个东西不影响驱动整体的架构。
4.设备访问方法
从第3结的分析可知,驱动并没有注册任何字符设备或者杂项设备,只是向sys文件系统注册了一个二进制属性文件。因此要访问设备,必须通过该文件的读写函数来。
读写函数在probe函数中指定为at24_bin_write和at24_bin_read,我们来分别看下。
4.1 写函数(at24_bin_write)
static ssize_t at24_bin_write(struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct at24_data *at24; /* 通过kobj获取device,再获取driver_data */ at24 = dev_get_drvdata(container_of(kobj, struct device, kobj)); return at24_write(at24, buf, off, count); }该函数首先通过kobj获取了struct device的指针,再获取了at24。
接着直接调用了at24_write。如下:
tatic ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off, size_t count) { ssize_t retval = 0; if (unlikely(!count)) return count; /* * Write data to chip, protecting against concurrent updates * from this host, but not from other I2C masters. */ /* 访问设备前,加锁*/ mutex_lock(&at24->lock); while (count) { ssize_t status; status = at24_eeprom_write(at24, buf, off, count); if (status <= 0) { if (retval == 0) retval = status; break; } buf += status; off += status; count -= status; retval += status; } mutex_unlock(&at24->lock); return retval; }
该函数不复杂。在访问设备前,首先加锁互斥体,以防止竞态。然后根据count来调用at24_eeprom_write函数将数据写入设备。
写入成功后,更新偏移量等信息,如果还需要写入,则再次调用at24_eeprom_write函数。
看下at24_eeprom_write函数:
/* * Note that if the hardware write-protect pin is pulled high, the whole * chip is normally write protected. But there are plenty of product * variants here, including OTP fuses and partial chip protect. * * We only use page mode writes; the alternative is sloooow. This routine * writes at most one page. */ static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf, unsigned offset, size_t count) { struct i2c_client *client; struct i2c_msg msg; ssize_t status; unsigned long timeout, write_time; unsigned next_page; /* Get corresponding I2C address and adjust offset */ client = at24_translate_offset(at24, &offset); /* write_max is at most a page */ /* 检查写入的字节数*/ if (count > at24->write_max) count = at24->write_max; /* Never roll over backwards, to the start of this page */ /* 写入不会超过下一页的边界*/ next_page = roundup(offset + 1, at24->chip.page_size); /* 根据页大小调整count*/ if (offset + count > next_page) count = next_page - offset; /* If we'll use I2C calls for I/O, set up the message */ /* 使用I2C协议,需要填充msg*/ if (!at24->use_smbus) { int i = 0; msg.addr = client->addr; /*设备地址*/ msg.flags = 0; /* msg.buf is u8 and casts will mask the values */ /* 使用writebuf作为发送缓冲区 */ msg.buf = at24->writebuf; /* 根据是8位还是16位地址,msg.buf的前一(两)个字节 为设备内部的寄存器地址*/ if (at24->chip.flags & AT24_FLAG_ADDR16) msg.buf[i++] = offset >> 8; /* 16位地址,先写高位地址*/ msg.buf[i++] = offset; /* 复制需要发送的数据 */ memcpy(&msg.buf[i], buf, count); msg.len = i + count; /* 发送长度为数据长度加上地址长度*/ } /* * Writes fail if the previous one didn't complete yet. We may * loop a few times until this one succeeds, waiting at least * long enough for one entire page write to work. */ timeout = jiffies + msecs_to_jiffies(write_timeout); do { write_time = jiffies; if (at24->use_smbus) { /* 使用SMBus协议发送*/ status = i2c_smbus_write_i2c_block_data(client, offset, count, buf); if (status == 0) status = count; } else { /* 使用I2C协议发送*/ status = i2c_transfer(client->adapter, &msg, 1); if (status == 1) status = count; } dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n", count, offset, status, jiffies); if (status == count) return count; /* 已全部写入,返回*/ /* REVISIT: at HZ=100, this is sloooow */ msleep(1); } while (time_before(write_time, timeout)); /* 使用timeout */ return -ETIMEDOUT; /* 超时,返回错误*/ }
该函数首先调用了at24_translate_offset函数,来获取地址对应的client:
/* * This routine supports chips which consume multiple I2C addresses. It * computes the addressing information to be used for a given r/w request. * Assumes that sanity checks for offset happened at sysfs-layer. */ static struct i2c_client *at24_translate_offset(struct at24_data *at24, unsigned *offset) { unsigned i; /* 有多个I2C设备地址,根据offset获取该地址对应的client*/ if (at24->chip.flags & AT24_FLAG_ADDR16) { i = *offset >> 16; *offset &= 0xffff; } else { i = *offset >> 8; *offset &= 0xff; } return at24->client[i]; }
然后,对写入的字节数(count)进行了调整。
随后,如果使用I2C协议,则要组建msg用于发送。
最后,根据使用I2C还是SMBus协议,调用相应的发送函数来发送数据。
注意的是,这里使用了超时,超时时间write_timeout为驱动模块参数,可由用户设置,默认为25ms。如果发送超时了,while循环将终止。
至此,at24c02的写入过程就结束了。
4.2 读函数(at24_bin_read)
写函数和读函数非常相似,只是在使用I2C协议时,组建的msg有所不同。同样读函数也使用了超时。
因此,这里仅仅给出代码:/* * This routine supports chips which consume multiple I2C addresses. It * computes the addressing information to be used for a given r/w request. * Assumes that sanity checks for offset happened at sysfs-layer. */ static struct i2c_client *at24_translate_offset(struct at24_data *at24, unsigned *offset) { unsigned i; /* 有多个I2C设备地址,根据offset获取该地址对应的client*/ if (at24->chip.flags & AT24_FLAG_ADDR16) { i = *offset >> 16; *offset &= 0xffff; } else { i = *offset >> 8; *offset &= 0xff; } return at24->client[i]; } static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf, unsigned offset, size_t count) { struct i2c_msg msg[2]; u8 msgbuf[2]; struct i2c_client *client; unsigned long timeout, read_time; int status, i; memset(msg, 0, sizeof(msg)); /* * REVISIT some multi-address chips don't rollover page reads to * the next slave address, so we may need to truncate the count. * Those chips might need another quirk flag. * * If the real hardware used four adjacent 24c02 chips and that * were misconfigured as one 24c08, that would be a similar effect: * one "eeprom" file not four, but larger reads would fail when * they crossed certain pages. */ /* * Slave address and byte offset derive from the offset. Always * set the byte address; on a multi-master board, another master * may have changed the chip's "current" address pointer. */ client = at24_translate_offset(at24, &offset); if (count > io_limit) count = io_limit; if (at24->use_smbus) { /* Smaller eeproms can work given some SMBus extension calls */ if (count > I2C_SMBUS_BLOCK_MAX) count = I2C_SMBUS_BLOCK_MAX; } else { /* 使用I2C协议,需要填充msg*/ /* * When we have a better choice than SMBus calls, use a * combined I2C message. Write address; then read up to * io_limit data bytes. Note that read page rollover helps us * here (unlike writes). msgbuf is u8 and will cast to our * needs. */ i = 0; if (at24->chip.flags & AT24_FLAG_ADDR16) msgbuf[i++] = offset >> 8; msgbuf[i++] = offset; msg[0].addr = client->addr; msg[0].buf = msgbuf; msg[0].len = i; msg[1].addr = client->addr; msg[1].flags = I2C_M_RD; /* 读模式*/ msg[1].buf = buf; msg[1].len = count; } /* * Reads fail if the previous write didn't complete yet. We may * loop a few times until this one succeeds, waiting at least * long enough for one entire page write to work. */ timeout = jiffies + msecs_to_jiffies(write_timeout); do { read_time = jiffies; if (at24->use_smbus) { status = i2c_smbus_read_i2c_block_data(client, offset, count, buf); } else { status = i2c_transfer(client->adapter, msg, 2); if (status == 2) status = count; } dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n", count, offset, status, jiffies); if (status == count) return count; /* REVISIT: at HZ=100, this is sloooow */ msleep(1); } while (time_before(read_time, timeout)); /* 使用timeout */ return -ETIMEDOUT; } static ssize_t at24_read(struct at24_data *at24, char *buf, loff_t off, size_t count) { ssize_t retval = 0; if (unlikely(!count)) return count; /* * Read data from chip, protecting against concurrent updates * from this host, but not from other I2C masters. */ /* 访问设备前,加锁*/ mutex_lock(&at24->lock); while (count) { ssize_t status; status = at24_eeprom_read(at24, buf, off, count); if (status <= 0) { if (retval == 0) retval = status; break; } buf += status; off += status; count -= status; retval += status; } mutex_unlock(&at24->lock); return retval; } static ssize_t at24_bin_read(struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct at24_data *at24; /* 通过kobj获取device,再获取driver_data */ at24 = dev_get_drvdata(container_of(kobj, struct device, kobj)); return at24_read(at24, buf, off, count); }
5. 总结
本文主要对at24c02的驱动架构进行了分析。该驱动基于i2c总线架构,提供了id表来帮助设备驱动的绑定,该驱动支持AT24CXX等多个系列,不仅仅是at24c02。
其次,该驱动并没有注册任何字符设备或者杂项设备,而是通过sys文件系统的二进制属性文件来对设备进行访问。此外,驱动同时支持I2C协议和SMBus协议来访问设备。
有关驱动的移植可以参考: