概要
本章对Java.util.concurrent包中的ConcurrentHashMap类进行详细的介绍。内容包括:
ConcurrentLinkedQueue介绍
ConcurrentLinkedQueue原理和数据结构
ConcurrentLinkedQueue函数列表
ConcurrentLinkedQueue源码分析(JDK1.7.0_40版本)
ConcurrentLinkedQueue示例
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3498995.html
ConcurrentLinkedQueue介绍
ConcurrentLinkedQueue是线程安全的队列,它适用于“高并发”的场景。
它是一个基于链接节点的*线程安全队列,按照 FIFO(先进先出)原则对元素进行排序。队列元素中不可以放置null元素(内部实现的特殊节点除外)。
ConcurrentLinkedQueue原理和数据结构
ConcurrentLinkedQueue的数据结构,如下图所示:
说明:
1. ConcurrentLinkedQueue继承于AbstractQueue。
2. ConcurrentLinkedQueue内部是通过链表来实现的。它同时包含链表的头节点head和尾节点tail。ConcurrentLinkedQueue按照 FIFO(先进先出)原则对元素进行排序。元素都是从尾部插入到链表,从头部开始返回。
3. ConcurrentLinkedQueue的链表Node中的next的类型是volatile,而且链表数据item的类型也是volatile。关于volatile,我们知道它的语义包含:“即对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入”。ConcurrentLinkedQueue就是通过volatile来实现多线程对竞争资源的互斥访问的。
ConcurrentLinkedQueue函数列表
// 创建一个最初为空的 ConcurrentLinkedQueue。
ConcurrentLinkedQueue()
// 创建一个最初包含给定 collection 元素的 ConcurrentLinkedQueue,按照此 collection 迭代器的遍历顺序来添加元素。
ConcurrentLinkedQueue(Collection<? extends E> c)
// 将指定元素插入此队列的尾部。
boolean add(E e)
// 如果此队列包含指定元素,则返回 true。
boolean contains(Object o)
// 如果此队列不包含任何元素,则返回 true。
boolean isEmpty()
// 返回在此队列元素上以恰当顺序进行迭代的迭代器。
Iterator<E> iterator()
// 将指定元素插入此队列的尾部。
boolean offer(E e)
// 获取但不移除此队列的头;如果此队列为空,则返回 null。
E peek()
// 获取并移除此队列的头,如果此队列为空,则返回 null。
E poll()
// 从队列中移除指定元素的单个实例(如果存在)。
boolean remove(Object o)
// 返回此队列中的元素数量。
int size()
// 返回以恰当顺序包含此队列所有元素的数组。
Object[] toArray()
// 返回以恰当顺序包含此队列所有元素的数组;返回数组的运行时类型是指定数组的运行时类型。
<T> T[] toArray(T[] a)
ConcurrentLinkedQueue源码分析(JDK1.7.0_40版本)
ConcurrentLinkedQueue的完整源码如下:
1 /*View Code
2 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
3 *
4 *
5 *
6 *
7 *
8 *
9 *
10 *
11 *
12 *
13 *
14 *
15 *
16 *
17 *
18 *
19 *
20 *
21 *
22 *
23 */
24
25 /*
26 *
27 *
28 *
29 *
30 *
31 * Written by Doug Lea and Martin Buchholz with assistance from members of
32 * JCP JSR-166 Expert Group and released to the public domain, as explained
33 * at http://creativecommons.org/publicdomain/zero/1.0/
34 */
35
36 package java.util.concurrent;
37
38 import java.util.AbstractQueue;
39 import java.util.ArrayList;
40 import java.util.Collection;
41 import java.util.Iterator;
42 import java.util.NoSuchElementException;
43 import java.util.Queue;
44
45 /**
46 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
47 * This queue orders elements FIFO (first-in-first-out).
48 * The <em>head</em> of the queue is that element that has been on the
49 * queue the longest time.
50 * The <em>tail</em> of the queue is that element that has been on the
51 * queue the shortest time. New elements
52 * are inserted at the tail of the queue, and the queue retrieval
53 * operations obtain elements at the head of the queue.
54 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
55 * many threads will share access to a common collection.
56 * Like most other concurrent collection implementations, this class
57 * does not permit the use of {@code null} elements.
58 *
59 * <p>This implementation employs an efficient "wait-free"
60 * algorithm based on one described in <a
61 * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple,
62 * Fast, and Practical Non-Blocking and Blocking Concurrent Queue
63 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
64 *
65 * <p>Iterators are <i>weakly consistent</i>, returning elements
66 * reflecting the state of the queue at some point at or since the
67 * creation of the iterator. They do <em>not</em> throw {@link
68 * java.util.ConcurrentModificationException}, and may proceed concurrently
69 * with other operations. Elements contained in the queue since the creation
70 * of the iterator will be returned exactly once.
71 *
72 * <p>Beware that, unlike in most collections, the {@code size} method
73 * is <em>NOT</em> a constant-time operation. Because of the
74 * asynchronous nature of these queues, determining the current number
75 * of elements requires a traversal of the elements, and so may report
76 * inaccurate results if this collection is modified during traversal.
77 * Additionally, the bulk operations {@code addAll},
78 * {@code removeAll}, {@code retainAll}, {@code containsAll},
79 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
80 * to be performed atomically. For example, an iterator operating
81 * concurrently with an {@code addAll} operation might view only some
82 * of the added elements.
83 *
84 * <p>This class and its iterator implement all of the <em>optional</em>
85 * methods of the {@link Queue} and {@link Iterator} interfaces.
86 *
87 * <p>Memory consistency effects: As with other concurrent
88 * collections, actions in a thread prior to placing an object into a
89 * {@code ConcurrentLinkedQueue}
90 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
91 * actions subsequent to the access or removal of that element from
92 * the {@code ConcurrentLinkedQueue} in another thread.
93 *
94 * <p>This class is a member of the
95 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
96 * Java Collections Framework</a>.
97 *
98 * @since 1.5
99 * @author Doug Lea
100 * @param <E> the type of elements held in this collection
101 *
102 */
103 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
104 implements Queue<E>, java.io.Serializable {
105 private static final long serialVersionUID = 196745693267521676L;
106
107 /*
108 * This is a modification of the Michael & Scott algorithm,
109 * adapted for a garbage-collected environment, with support for
110 * interior node deletion (to support remove(Object)). For
111 * explanation, read the paper.
112 *
113 * Note that like most non-blocking algorithms in this package,
114 * this implementation relies on the fact that in garbage
115 * collected systems, there is no possibility of ABA problems due
116 * to recycled nodes, so there is no need to use "counted
117 * pointers" or related techniques seen in versions used in
118 * non-GC'ed settings.
119 *
120 * The fundamental invariants are:
121 * - There is exactly one (last) Node with a null next reference,
122 * which is CASed when enqueueing. This last Node can be
123 * reached in O(1) time from tail, but tail is merely an
124 * optimization - it can always be reached in O(N) time from
125 * head as well.
126 * - The elements contained in the queue are the non-null items in
127 * Nodes that are reachable from head. CASing the item
128 * reference of a Node to null atomically removes it from the
129 * queue. Reachability of all elements from head must remain
130 * true even in the case of concurrent modifications that cause
131 * head to advance. A dequeued Node may remain in use
132 * indefinitely due to creation of an Iterator or simply a
133 * poll() that has lost its time slice.
134 *
135 * The above might appear to imply that all Nodes are GC-reachable
136 * from a predecessor dequeued Node. That would cause two problems:
137 * - allow a rogue Iterator to cause unbounded memory retention
138 * - cause cross-generational linking of old Nodes to new Nodes if
139 * a Node was tenured while live, which generational GCs have a
140 * hard time dealing with, causing repeated major collections.
141 * However, only non-deleted Nodes need to be reachable from
142 * dequeued Nodes, and reachability does not necessarily have to
143 * be of the kind understood by the GC. We use the trick of
144 * linking a Node that has just been dequeued to itself. Such a
145 * self-link implicitly means to advance to head.
146 *
147 * Both head and tail are permitted to lag. In fact, failing to
148 * update them every time one could is a significant optimization
149 * (fewer CASes). As with LinkedTransferQueue (see the internal
150 * documentation for that class), we use a slack threshold of two;
151 * that is, we update head/tail when the current pointer appears
152 * to be two or more steps away from the first/last node.
153 *
154 * Since head and tail are updated concurrently and independently,
155 * it is possible for tail to lag behind head (why not)?
156 *
157 * CASing a Node's item reference to null atomically removes the
158 * element from the queue. Iterators skip over Nodes with null
159 * items. Prior implementations of this class had a race between
160 * poll() and remove(Object) where the same element would appear
161 * to be successfully removed by two concurrent operations. The
162 * method remove(Object) also lazily unlinks deleted Nodes, but
163 * this is merely an optimization.
164 *
165 * When constructing a Node (before enqueuing it) we avoid paying
166 * for a volatile write to item by using Unsafe.putObject instead
167 * of a normal write. This allows the cost of enqueue to be
168 * "one-and-a-half" CASes.
169 *
170 * Both head and tail may or may not point to a Node with a
171 * non-null item. If the queue is empty, all items must of course
172 * be null. Upon creation, both head and tail refer to a dummy
173 * Node with null item. Both head and tail are only updated using
174 * CAS, so they never regress, although again this is merely an
175 * optimization.
176 */
177
178 private static class Node<E> {
179 volatile E item;
180 volatile Node<E> next;
181
182 /**
183 * Constructs a new node. Uses relaxed write because item can
184 * only be seen after publication via casNext.
185 */
186 Node(E item) {
187 UNSAFE.putObject(this, itemOffset, item);
188 }
189
190 boolean casItem(E cmp, E val) {
191 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
192 }
193
194 void lazySetNext(Node<E> val) {
195 UNSAFE.putOrderedObject(this, nextOffset, val);
196 }
197
198 boolean casNext(Node<E> cmp, Node<E> val) {
199 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
200 }
201
202 // Unsafe mechanics
203
204 private static final sun.misc.Unsafe UNSAFE;
205 private static final long itemOffset;
206 private static final long nextOffset;
207
208 static {
209 try {
210 UNSAFE = sun.misc.Unsafe.getUnsafe();
211 Class k = Node.class;
212 itemOffset = UNSAFE.objectFieldOffset
213 (k.getDeclaredField("item"));
214 nextOffset = UNSAFE.objectFieldOffset
215 (k.getDeclaredField("next"));
216 } catch (Exception e) {
217 throw new Error(e);
218 }
219 }
220 }
221
222 /**
223 * A node from which the first live (non-deleted) node (if any)
224 * can be reached in O(1) time.
225 * Invariants:
226 * - all live nodes are reachable from head via succ()
227 * - head != null
228 * - (tmp = head).next != tmp || tmp != head
229 * Non-invariants:
230 * - head.item may or may not be null.
231 * - it is permitted for tail to lag behind head, that is, for tail
232 * to not be reachable from head!
233 */
234 private transient volatile Node<E> head;
235
236 /**
237 * A node from which the last node on list (that is, the unique
238 * node with node.next == null) can be reached in O(1) time.
239 * Invariants:
240 * - the last node is always reachable from tail via succ()
241 * - tail != null
242 * Non-invariants:
243 * - tail.item may or may not be null.
244 * - it is permitted for tail to lag behind head, that is, for tail
245 * to not be reachable from head!
246 * - tail.next may or may not be self-pointing to tail.
247 */
248 private transient volatile Node<E> tail;
249
250
251 /**
252 * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
253 */
254 public ConcurrentLinkedQueue() {
255 head = tail = new Node<E>(null);
256 }
257
258 /**
259 * Creates a {@code ConcurrentLinkedQueue}
260 * initially containing the elements of the given collection,
261 * added in traversal order of the collection's iterator.
262 *
263 * @param c the collection of elements to initially contain
264 * @throws NullPointerException if the specified collection or any
265 * of its elements are null
266 */
267 public ConcurrentLinkedQueue(Collection<? extends E> c) {
268 Node<E> h = null, t = null;
269 for (E e : c) {
270 checkNotNull(e);
271 Node<E> newNode = new Node<E>(e);
272 if (h == null)
273 h = t = newNode;
274 else {
275 t.lazySetNext(newNode);
276 t = newNode;
277 }
278 }
279 if (h == null)
280 h = t = new Node<E>(null);
281 head = h;
282 tail = t;
283 }
284
285 // Have to override just to update the javadoc
286
287 /**
288 * Inserts the specified element at the tail of this queue.
289 * As the queue is unbounded, this method will never throw
290 * {@link IllegalStateException} or return {@code false}.
291 *
292 * @return {@code true} (as specified by {@link Collection#add})
293 * @throws NullPointerException if the specified element is null
294 */
295 public boolean add(E e) {
296 return offer(e);
297 }
298
299 /**
300 * Try to CAS head to p. If successful, repoint old head to itself
301 * as sentinel for succ(), below.
302 */
303 final void updateHead(Node<E> h, Node<E> p) {
304 if (h != p && casHead(h, p))
305 h.lazySetNext(h);
306 }
307
308 /**
309 * Returns the successor of p, or the head node if p.next has been
310 * linked to self, which will only be true if traversing with a
311 * stale pointer that is now off the list.
312 */
313 final Node<E> succ(Node<E> p) {
314 Node<E> next = p.next;
315 return (p == next) ? head : next;
316 }
317
318 /**
319 * Inserts the specified element at the tail of this queue.
320 * As the queue is unbounded, this method will never return {@code false}.
321 *
322 * @return {@code true} (as specified by {@link Queue#offer})
323 * @throws NullPointerException if the specified element is null
324 */
325 public boolean offer(E e) {
326 checkNotNull(e);
327 final Node<E> newNode = new Node<E>(e);
328
329 for (Node<E> t = tail, p = t;;) {
330 Node<E> q = p.next;
331 if (q == null) {
332 // p is last node
333 if (p.casNext(null, newNode)) {
334 // Successful CAS is the linearization point
335 // for e to become an element of this queue,
336 // and for newNode to become "live".
337 if (p != t) // hop two nodes at a time
338 casTail(t, newNode); // Failure is OK.
339 return true;
340 }
341 // Lost CAS race to another thread; re-read next
342 }
343 else if (p == q)
344 // We have fallen off list. If tail is unchanged, it
345 // will also be off-list, in which case we need to
346 // jump to head, from which all live nodes are always
347 // reachable. Else the new tail is a better bet.
348 p = (t != (t = tail)) ? t : head;
349 else
350 // Check for tail updates after two hops.
351 p = (p != t && t != (t = tail)) ? t : q;
352 }
353 }
354
355 public E poll() {
356 restartFromHead:
357 for (;;) {
358 for (Node<E> h = head, p = h, q;;) {
359 E item = p.item;
360
361 if (item != null && p.casItem(item, null)) {
362 // Successful CAS is the linearization point
363 // for item to be removed from this queue.
364 if (p != h) // hop two nodes at a time
365 updateHead(h, ((q = p.next) != null) ? q : p);
366 return item;
367 }
368 else if ((q = p.next) == null) {
369 updateHead(h, p);
370 return null;
371 }
372 else if (p == q)
373 continue restartFromHead;
374 else
375 p = q;
376 }
377 }
378 }
379
380 public E peek() {
381 restartFromHead:
382 for (;;) {
383 for (Node<E> h = head, p = h, q;;) {
384 E item = p.item;
385 if (item != null || (q = p.next) == null) {
386 updateHead(h, p);
387 return item;
388 }
389 else if (p == q)
390 continue restartFromHead;
391 else
392 p = q;
393 }
394 }
395 }
396
397 /**
398 * Returns the first live (non-deleted) node on list, or null if none.
399 * This is yet another variant of poll/peek; here returning the
400 * first node, not element. We could make peek() a wrapper around
401 * first(), but that would cost an extra volatile read of item,
402 * and the need to add a retry loop to deal with the possibility
403 * of losing a race to a concurrent poll().
404 */
405 Node<E> first() {
406 restartFromHead:
407 for (;;) {
408 for (Node<E> h = head, p = h, q;;) {
409 boolean hasItem = (p.item != null);
410 if (hasItem || (q = p.next) == null) {
411 updateHead(h, p);
412 return hasItem ? p : null;
413 }
414 else if (p == q)
415 continue restartFromHead;
416 else
417 p = q;
418 }
419 }
420 }
421
422 /**
423 * Returns {@code true} if this queue contains no elements.
424 *
425 * @return {@code true} if this queue contains no elements
426 */
427 public boolean isEmpty() {
428 return first() == null;
429 }
430
431 /**
432 * Returns the number of elements in this queue. If this queue
433 * contains more than {@code Integer.MAX_VALUE} elements, returns
434 * {@code Integer.MAX_VALUE}.
435 *
436 * <p>Beware that, unlike in most collections, this method is
437 * <em>NOT</em> a constant-time operation. Because of the
438 * asynchronous nature of these queues, determining the current
439 * number of elements requires an O(n) traversal.
440 * Additionally, if elements are added or removed during execution
441 * of this method, the returned result may be inaccurate. Thus,
442 * this method is typically not very useful in concurrent
443 * applications.
444 *
445 * @return the number of elements in this queue
446 */
447 public int size() {
448 int count = 0;
449 for (Node<E> p = first(); p != null; p = succ(p))
450 if (p.item != null)
451 // Collection.size() spec says to max out
452 if (++count == Integer.MAX_VALUE)
453 break;
454 return count;
455 }
456
457 /**
458 * Returns {@code true} if this queue contains the specified element.
459 * More formally, returns {@code true} if and only if this queue contains
460 * at least one element {@code e} such that {@code o.equals(e)}.
461 *
462 * @param o object to be checked for containment in this queue
463 * @return {@code true} if this queue contains the specified element
464 */
465 public boolean contains(Object o) {
466 if (o == null) return false;
467 for (Node<E> p = first(); p != null; p = succ(p)) {
468 E item = p.item;
469 if (item != null && o.equals(item))
470 return true;
471 }
472 return false;
473 }
474
475 /**
476 * Removes a single instance of the specified element from this queue,
477 * if it is present. More formally, removes an element {@code e} such
478 * that {@code o.equals(e)}, if this queue contains one or more such
479 * elements.
480 * Returns {@code true} if this queue contained the specified element
481 * (or equivalently, if this queue changed as a result of the call).
482 *
483 * @param o element to be removed from this queue, if present
484 * @return {@code true} if this queue changed as a result of the call
485 */
486 public boolean remove(Object o) {
487 if (o == null) return false;
488 Node<E> pred = null;
489 for (Node<E> p = first(); p != null; p = succ(p)) {
490 E item = p.item;
491 if (item != null &&
492 o.equals(item) &&
493 p.casItem(item, null)) {
494 Node<E> next = succ(p);
495 if (pred != null && next != null)
496 pred.casNext(p, next);
497 return true;
498 }
499 pred = p;
500 }
501 return false;
502 }
503
504 /**
505 * Appends all of the elements in the specified collection to the end of
506 * this queue, in the order that they are returned by the specified
507 * collection's iterator. Attempts to {@code addAll} of a queue to
508 * itself result in {@code IllegalArgumentException}.
509 *
510 * @param c the elements to be inserted into this queue
511 * @return {@code true} if this queue changed as a result of the call
512 * @throws NullPointerException if the specified collection or any
513 * of its elements are null
514 * @throws IllegalArgumentException if the collection is this queue
515 */
516 public boolean addAll(Collection<? extends E> c) {
517 if (c == this)
518 // As historically specified in AbstractQueue#addAll
519 throw new IllegalArgumentException();
520
521 // Copy c into a private chain of Nodes
522 Node<E> beginningOfTheEnd = null, last = null;
523 for (E e : c) {
524 checkNotNull(e);
525 Node<E> newNode = new Node<E>(e);
526 if (beginningOfTheEnd == null)
527 beginningOfTheEnd = last = newNode;
528 else {
529 last.lazySetNext(newNode);
530 last = newNode;
531 }
532 }
533 if (beginningOfTheEnd == null)
534 return false;
535
536 // Atomically append the chain at the tail of this collection
537 for (Node<E> t = tail, p = t;;) {
538 Node<E> q = p.next;
539 if (q == null) {
540 // p is last node
541 if (p.casNext(null, beginningOfTheEnd)) {
542 // Successful CAS is the linearization point
543 // for all elements to be added to this queue.
544 if (!casTail(t, last)) {
545 // Try a little harder to update tail,
546 // since we may be adding many elements.
547 t = tail;
548 if (last.next == null)
549 casTail(t, last);
550 }
551 return true;
552 }
553 // Lost CAS race to another thread; re-read next
554 }
555 else if (p == q)
556 // We have fallen off list. If tail is unchanged, it
557 // will also be off-list, in which case we need to
558 // jump to head, from which all live nodes are always
559 // reachable. Else the new tail is a better bet.
560 p = (t != (t = tail)) ? t : head;
561 else
562 // Check for tail updates after two hops.
563 p = (p != t && t != (t = tail)) ? t : q;
564 }
565 }
566
567 /**
568 * Returns an array containing all of the elements in this queue, in
569 * proper sequence.
570 *
571 * <p>The returned array will be "safe" in that no references to it are
572 * maintained by this queue. (In other words, this method must allocate
573 * a new array). The caller is thus free to modify the returned array.
574 *
575 * <p>This method acts as bridge between array-based and collection-based
576 * APIs.
577 *
578 * @return an array containing all of the elements in this queue
579 */
580 public Object[] toArray() {
581 // Use ArrayList to deal with resizing.
582 ArrayList<E> al = new ArrayList<E>();
583 for (Node<E> p = first(); p != null; p = succ(p)) {
584 E item = p.item;
585 if (item != null)
586 al.add(item);
587 }
588 return al.toArray();
589 }
590
591 /**
592 * Returns an array containing all of the elements in this queue, in
593 * proper sequence; the runtime type of the returned array is that of
594 * the specified array. If the queue fits in the specified array, it
595 * is returned therein. Otherwise, a new array is allocated with the
596 * runtime type of the specified array and the size of this queue.
597 *
598 * <p>If this queue fits in the specified array with room to spare
599 * (i.e., the array has more elements than this queue), the element in
600 * the array immediately following the end of the queue is set to
601 * {@code null}.
602 *
603 * <p>Like the {@link #toArray()} method, this method acts as bridge between
604 * array-based and collection-based APIs. Further, this method allows
605 * precise control over the runtime type of the output array, and may,
606 * under certain circumstances, be used to save allocation costs.
607 *
608 * <p>Suppose {@code x} is a queue known to contain only strings.
609 * The following code can be used to dump the queue into a newly
610 * allocated array of {@code String}:
611 *
612 * <pre>
613 * String[] y = x.toArray(new String[0]);</pre>
614 *
615 * Note that {@code toArray(new Object[0])} is identical in function to
616 * {@code toArray()}.
617 *
618 * @param a the array into which the elements of the queue are to
619 * be stored, if it is big enough; otherwise, a new array of the
620 * same runtime type is allocated for this purpose
621 * @return an array containing all of the elements in this queue
622 * @throws ArrayStoreException if the runtime type of the specified array
623 * is not a supertype of the runtime type of every element in
624 * this queue
625 * @throws NullPointerException if the specified array is null
626 */
627 @SuppressWarnings("unchecked")
628 public <T> T[] toArray(T[] a) {
629 // try to use sent-in array
630 int k = 0;
631 Node<E> p;
632 for (p = first(); p != null && k < a.length; p = succ(p)) {
633 E item = p.item;
634 if (item != null)
635 a[k++] = (T)item;
636 }
637 if (p == null) {
638 if (k < a.length)
639 a[k] = null;
640 return a;
641 }
642
643 // If won't fit, use ArrayList version
644 ArrayList<E> al = new ArrayList<E>();
645 for (Node<E> q = first(); q != null; q = succ(q)) {
646 E item = q.item;
647 if (item != null)
648 al.add(item);
649 }
650 return al.toArray(a);
651 }
652
653 /**
654 * Returns an iterator over the elements in this queue in proper sequence.
655 * The elements will be returned in order from first (head) to last (tail).
656 *
657 * <p>The returned iterator is a "weakly consistent" iterator that
658 * will never throw {@link java.util.ConcurrentModificationException
659 * ConcurrentModificationException}, and guarantees to traverse
660 * elements as they existed upon construction of the iterator, and
661 * may (but is not guaranteed to) reflect any modifications
662 * subsequent to construction.
663 *
664 * @return an iterator over the elements in this queue in proper sequence
665 */
666 public Iterator<E> iterator() {
667 return new Itr();
668 }
669
670 private class Itr implements Iterator<E> {
671 /**
672 * Next node to return item for.
673 */
674 private Node<E> nextNode;
675
676 /**
677 * nextItem holds on to item fields because once we claim
678 * that an element exists in hasNext(), we must return it in
679 * the following next() call even if it was in the process of
680 * being removed when hasNext() was called.
681 */
682 private E nextItem;
683
684 /**
685 * Node of the last returned item, to support remove.
686 */
687 private Node<E> lastRet;
688
689 Itr() {
690 advance();
691 }
692
693 /**
694 * Moves to next valid node and returns item to return for
695 * next(), or null if no such.
696 */
697 private E advance() {
698 lastRet = nextNode;
699 E x = nextItem;
700
701 Node<E> pred, p;
702 if (nextNode == null) {
703 p = first();
704 pred = null;
705 } else {
706 pred = nextNode;
707 p = succ(nextNode);
708 }
709
710 for (;;) {
711 if (p == null) {
712 nextNode = null;
713 nextItem = null;
714 return x;
715 }
716 E item = p.item;
717 if (item != null) {
718 nextNode = p;
719 nextItem = item;
720 return x;
721 } else {
722 // skip over nulls
723 Node<E> next = succ(p);
724 if (pred != null && next != null)
725 pred.casNext(p, next);
726 p = next;
727 }
728 }
729 }
730
731 public boolean hasNext() {
732 return nextNode != null;
733 }
734
735 public E next() {
736 if (nextNode == null) throw new NoSuchElementException();
737 return advance();
738 }
739
740 public void remove() {
741 Node<E> l = lastRet;
742 if (l == null) throw new IllegalStateException();
743 // rely on a future traversal to relink.
744 l.item = null;
745 lastRet = null;
746 }
747 }
748
749 /**
750 * Saves the state to a stream (that is, serializes it).
751 *
752 * @serialData All of the elements (each an {@code E}) in
753 * the proper order, followed by a null
754 * @param s the stream
755 */
756 private void writeObject(java.io.ObjectOutputStream s)
757 throws java.io.IOException {
758
759 // Write out any hidden stuff
760 s.defaultWriteObject();
761
762 // Write out all elements in the proper order.
763 for (Node<E> p = first(); p != null; p = succ(p)) {
764 Object item = p.item;
765 if (item != null)
766 s.writeObject(item);
767 }
768
769 // Use trailing null as sentinel
770 s.writeObject(null);
771 }
772
773 /**
774 * Reconstitutes the instance from a stream (that is, deserializes it).
775 * @param s the stream
776 */
777 private void readObject(java.io.ObjectInputStream s)
778 throws java.io.IOException, ClassNotFoundException {
779 s.defaultReadObject();
780
781 // Read in elements until trailing null sentinel found
782 Node<E> h = null, t = null;
783 Object item;
784 while ((item = s.readObject()) != null) {
785 @SuppressWarnings("unchecked")
786 Node<E> newNode = new Node<E>((E) item);
787 if (h == null)
788 h = t = newNode;
789 else {
790 t.lazySetNext(newNode);
791 t = newNode;
792 }
793 }
794 if (h == null)
795 h = t = new Node<E>(null);
796 head = h;
797 tail = t;
798 }
799
800 /**
801 * Throws NullPointerException if argument is null.
802 *
803 * @param v the element
804 */
805 private static void checkNotNull(Object v) {
806 if (v == null)
807 throw new NullPointerException();
808 }
809
810 private boolean casTail(Node<E> cmp, Node<E> val) {
811 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
812 }
813
814 private boolean casHead(Node<E> cmp, Node<E> val) {
815 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
816 }
817
818 // Unsafe mechanics
819
820 private static final sun.misc.Unsafe UNSAFE;
821 private static final long headOffset;
822 private static final long tailOffset;
823 static {
824 try {
825 UNSAFE = sun.misc.Unsafe.getUnsafe();
826 Class k = ConcurrentLinkedQueue.class;
827 headOffset = UNSAFE.objectFieldOffset
828 (k.getDeclaredField("head"));
829 tailOffset = UNSAFE.objectFieldOffset
830 (k.getDeclaredField("tail"));
831 } catch (Exception e) {
832 throw new Error(e);
833 }
834 }
835 }
下面从ConcurrentLinkedQueue的创建,添加,删除这几个方面对它进行分析。
1 创建
下面以ConcurrentLinkedQueue()来进行说明。
public ConcurrentLinkedQueue() {
head = tail = new Node<E>(null);
}
说明:在构造函数中,新建了一个“内容为null的节点”,并设置表头head和表尾tail的值为新节点。
head和tail的定义如下:
private transient volatile Node<E> head;
private transient volatile Node<E> tail;
head和tail都是volatile类型,他们具有volatile赋予的含义:“即对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入”。
Node的声明如下:
private static class Node<E> {
volatile E item;
volatile Node<E> next;
Node(E item) {
UNSAFE.putObject(this, itemOffset, item);
}
boolean casItem(E cmp, E val) {
return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
}
void lazySetNext(Node<E> val) {
UNSAFE.putOrderedObject(this, nextOffset, val);
}
boolean casNext(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long itemOffset;
private static final long nextOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class k = Node.class;
itemOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("item"));
nextOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("next"));
} catch (Exception e) {
throw new Error(e);
}
}
}
说明:
Node是个单向链表节点,next用于指向下一个Node,item用于存储数据。Node中操作节点数据的API,都是通过Unsafe机制的CAS函数实现的;例如casNext()是通过CAS函数“比较并设置节点的下一个节点”。
2. 添加
下面以add(E e)为例对ConcurrentLinkedQueue中的添加进行说明。
public boolean add(E e) {
return offer(e);
}
说明:add()实际上是调用的offer()来完成添加操作的。
offer()的源码如下:
public boolean offer(E e) {
// 检查e是不是null,是的话抛出NullPointerException异常。
checkNotNull(e);
// 创建新的节点
final Node<E> newNode = new Node<E>(e);
// 将“新的节点”添加到链表的末尾。
for (Node<E> t = tail, p = t;;) {
Node<E> q = p.next;
// 情况1:q为空
if (q == null) {
// CAS操作:如果“p的下一个节点为null”(即p为尾节点),则设置p的下一个节点为newNode。
// 如果该CAS操作成功的话,则比较“p和t”(若p不等于t,则设置newNode为新的尾节点),然后返回true。
// 如果该CAS操作失败,这意味着“其它线程对尾节点进行了修改”,则重新循环。
if (p.casNext(null, newNode)) {
if (p != t) // hop two nodes at a time
casTail(t, newNode); // Failure is OK.
return true;
}
}
// 情况2:p和q相等
else if (p == q)
p = (t != (t = tail)) ? t : head;
// 情况3:其它
else
p = (p != t && t != (t = tail)) ? t : q;
}
}
说明:offer(E e)的作用就是将元素e添加到链表的末尾。offer()比较的地方是理解for循环,下面区分3种情况对for进行分析。
情况1 -- q为空。这意味着q是尾节点的下一个节点。此时,通过p.casNext(null, newNode)将“p的下一个节点设为newNode”,若设置成功的话,则比较“p和t”(若p不等于t,则设置newNode为新的尾节点),然后返回true。否则的话(意味着“其它线程对尾节点进行了修改”),什么也不做,继续进行for循环。
p.casNext(null, newNode),是调用CAS对p进行操作。若“p的下一个节点等于null”,则设置“p的下一个节点等于newNode”;设置成功的话,返回true,失败的话返回false。
情况2 -- p和q相等。这种情况什么时候会发生呢?通过“情况3”,我们知道,经过“情况3”的处理后,p的值可能等于q。
此时,若尾节点没有发生变化的话,那么,应该是头节点发生了变化,则设置p为头节点,然后重新遍历链表;否则(尾节点变化的话),则设置p为尾节点。
情况3 -- 其它。
我们将p = (p != t && t != (t = tail)) ? t : q;转换成如下代码。
if (p==t) {
p = q;
} else {
Node<E> tmp=t;
t = tail;
if (tmp==t) {
p=q;
} else {
p=t;
}
}
如果p和t相等,则设置p为q。否则的话,判断“尾节点是否发生变化”,没有变化的话,则设置p为q;否则,设置p为尾节点。
checkNotNull()的源码如下:
private static void checkNotNull(Object v) {
if (v == null)
throw new NullPointerException();
}
3. 删除
下面以poll()为例对ConcurrentLinkedQueue中的删除进行说明。
public E poll() {
// 设置“标记”
restartFromHead:
for (;;) {
for (Node<E> h = head, p = h, q;;) {
E item = p.item;
// 情况1
// 表头的数据不为null,并且“设置表头的数据为null”这个操作成功的话;
// 则比较“p和h”(若p!=h,即表头发生了变化,则更新表头,即设置表头为p),然后返回原表头的item值。
if (item != null && p.casItem(item, null)) {
if (p != h) // hop two nodes at a time
updateHead(h, ((q = p.next) != null) ? q : p);
return item;
}
// 情况2
// 表头的下一个节点为null,即链表只有一个“内容为null的表头节点”。则更新表头为p,并返回null。
else if ((q = p.next) == null) {
updateHead(h, p);
return null;
}
// 情况3
// 这可能到由于“情况4”的发生导致p=q,在该情况下跳转到restartFromHead标记重新操作。
else if (p == q)
continue restartFromHead;
// 情况4
// 设置p为q
else
p = q;
}
}
}
说明:poll()的作用就是删除链表的表头节点,并返回被删节点对应的值。poll()的实现原理和offer()比较类似,下面根将or循环划分为4种情况进行分析。
情况1:“表头节点的数据”不为null,并且“设置表头节点的数据为null”这个操作成功。
p.casItem(item, null) -- 调用CAS函数,比较“节点p的数据值”与item是否相等,是的话,设置节点p的数据值为null。
在情况1发生时,先比较“p和h”,若p!=h,即表头发生了变化,则调用updateHead()更新表头;然后返回删除节点的item值。
updateHead()的源码如下:
final void updateHead(Node<E> h, Node<E> p) {
if (h != p && casHead(h, p))
h.lazySetNext(h);
}
说明:updateHead()的最终目的是更新表头为p,并设置h的下一个节点为h本身。
casHead(h,p)是通过CAS函数设置表头,若表头等于h的话,则设置表头为p。
lazySetNext()的源码如下:
void lazySetNext(Node<E> val) {
UNSAFE.putOrderedObject(this, nextOffset, val);
}
putOrderedObject()函数,我们在前面一章“TODO”中介绍过。h.lazySetNext(h)的作用是通过CAS函数设置h的下一个节点为h自身,该设置可能会延迟执行。
情况2:如果表头的下一个节点为null,即链表只有一个“内容为null的表头节点”。
则调用updateHead(h, p),将表头更新p;然后返回null。
情况3:p=q
在“情况4”的发生后,会导致p=q;此时,“情况3”就会发生。当“情况3”发生后,它会跳转到restartFromHead标记重新操作。
情况4:其它情况。
设置p=q。
ConcurrentLinkedQueue示例
1 import java.util.*;
2 import java.util.concurrent.*;
3
4 /*
5 * ConcurrentLinkedQueue是“线程安全”的队列,而LinkedList是非线程安全的。
6 *
7 * 下面是“多个线程同时操作并且遍历queue”的示例
8 * (01) 当queue是ConcurrentLinkedQueue对象时,程序能正常运行。
9 * (02) 当queue是LinkedList对象时,程序会产生ConcurrentModificationException异常。
10 *
11 * @author skywang
12 */
13 public class ConcurrentLinkedQueueDemo1 {
14
15 // TODO: queue是LinkedList对象时,程序会出错。
16 //private static Queue<String> queue = new LinkedList<String>();
17 private static Queue<String> queue = new ConcurrentLinkedQueue<String>();
18 public static void main(String[] args) {
19
20 // 同时启动两个线程对queue进行操作!
21 new MyThread("ta").start();
22 new MyThread("tb").start();
23 }
24
25 private static void printAll() {
26 String value;
27 Iterator iter = queue.iterator();
28 while(iter.hasNext()) {
29 value = (String)iter.next();
30 System.out.print(value+", ");
31 }
32 System.out.println();
33 }
34
35 private static class MyThread extends Thread {
36 MyThread(String name) {
37 super(name);
38 }
39 @Override
40 public void run() {
41 int i = 0;
42 while (i++ < 6) {
43 // “线程名” + "-" + "序号"
44 String val = Thread.currentThread().getName()+i;
45 queue.add(val);
46 // 通过“Iterator”遍历queue。
47 printAll();
48 }
49 }
50 }
51 }
(某一次)运行结果:
ta1, ta1, tb1, tb1,
ta1, ta1, tb1, tb1, ta2, ta2, tb2,
tb2,
ta1, ta1, tb1, tb1, ta2, ta2, tb2, tb2, ta3, tb3,
ta3, ta1, tb3, tb1, ta4,
ta2, ta1, tb2, tb1, ta3, ta2, tb3, tb2, ta4, ta3, tb4,
tb3, ta1, ta4, tb1, tb4, ta2, ta5,
tb2, ta1, ta3, tb1, tb3, ta2, ta4, tb2, tb4, ta3, ta5, tb3, tb5,
ta4, ta1, tb4, tb1, ta5, ta2, tb5, tb2, ta6,
ta3, ta1, tb3, tb1, ta4, ta2, tb4, tb2, ta5, ta3, tb5, tb3, ta6, ta4, tb6,
tb4, ta5, tb5, ta6, tb6,
结果说明:如果将源码中的queue改成LinkedList对象时,程序会产生ConcurrentModificationException异常。
更多内容