题意:询问是否存在直线,使得所有线段在其上的投影拥有公共点
思路:如果投影拥有公共区域,那么从投影的公共区域作垂线,显然能够与所有线段相交,那么题目转换为询问是否存在直线与所有线段相交。判断相交先求叉积再用跨立实验。枚举每个线段的起始结束点作为直线起点终点遍历即可。
/** @Date : 2017-07-12 14:35:44
* @FileName: POJ 3304 基础线段交判断.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#include <math.h>
//#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; struct point
{
double x, y;
point(double _x, double _y){x = _x, y = _y;}
point(){}
point operator -(const point &b) const
{
return point(x - b.x, y - b.y);
}
double operator *(const point &b) const
{
return x * b.x + y * b.y;
}
double operator ^(const point &b) const
{
return x * b.y - y * b.x;
}
}; struct line
{
point s, t;
line(){}
line(point ss, point tt){s = ss, t = tt;}
}; double cross(point a, point b)
{
return a.x * b.y - a.y * b.x;
} double xmult(point p1, point p2, point p0)
{
return (p1 - p0) ^ (p2 - p0);
} double distc(point a, point b)
{
return sqrt((b - a) * (b - a));
} bool opposite(point p1, point p2, line l)
{
double t = xmult(l.s, l.t, p1) * xmult(l.s, l.t, p2);
printf("%.8lf\n", t);
return xmult(l.s, l.t, p1) * xmult(l.s, l.t, p2) < -eps;
} //线段与线段交
bool Sjudgeinter(line a, line b)
{
return opposite(b.s, b.t, a) && opposite(a.s, a.t, b);
} int sign(double x)
{
if(fabs(x) < eps)
return 0;
if(x < 0)
return -1;
return 1;
}
//线段与直线交 a为直线
bool judgeinter(line a, line b)
{
//return opposite(b.s, b.t, a);
/*double x = xmult(a.s, a.t, b.s);
double y = xmult(a.s, a.t, b.t);
printf("@%.4lf %.4lf\n", x, y);*/
return sign(xmult(a.s, a.t, b.s)) * sign(xmult(a.s, a.t, b.t)) <= 0;
} int n;
point p[200];
line l[200];
bool check(line li)
{
if(sign(distc(li.s, li.t)) == 0)
return 0;
for(int i = 0; i < n; i++)
if(judgeinter(li, l[i]) == 0)
return 0;
return 1;
} int main()
{
int T;
cin >> T;
while(T--)
{
scanf("%d", &n);
for(int i = 0; i < n; i++)
{
double x1, x2, y1, y2;
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
p[i] = point(x1, y1), p[i + 1] = point(x2, y2);
l[i] = line(p[i], p[i + 1]);
}
int ans = 0;
/*for(int i = 0; i < n * 2; i++)//不知道为啥直接枚举所有点就是WA
{
for(int j = 0; j < n * 2; j++)
{
if(ans)
break;
if(i == j || distc(p[i],p[j]) < eps)
continue;
line tmp = line(p[i], p[j]);
if(p[i].x == p[j].x && p[i].y == p[j].y)//考虑到枚举直线为重合点
continue;
int flag = 0;
for(int k = 0; k < n; k++)
{
if(k == 1)
printf("**");
if(judgeinter(tmp, l[k]) == 0)
{
flag = 1;
break;
} }
if(!flag)
ans = 1;
cout << i << "~"<< j << endl;
}
}*/
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
if(check(line(l[i].s, l[j].s))
|| check(line(l[i].s,l[j].t))
|| check(line(l[i].t, l[j].s))
|| check(line(l[i].t, l[j].t)) )
{
ans = 1;
break;
}
}
}
printf("%s\n", ans?"Yes!":"No!");
}
return 0;
}
//询问是否存在直线,使得所有线段在其上的投影拥有公共点
//如果存在公共区域,对其作垂线,那么其垂线必定过所有的线段
//那么转换为是否存在直线 与所有线段都相交