UVaLive 7361 Immortal Porpoises (矩阵快速幂)

时间:2022-02-15 18:28:09

题意:求Fibonacci的第 n 项。

析:矩阵快速幂,如果不懂请看http://www.cnblogs.com/dwtfukgv/articles/5595078.html

是不是很好懂呢。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <stack>
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10 + 5;
const int mod = 1e9;
const char *mark = "+-*";
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
struct Matrx{
LL x[3][3];
void init(){
memset(x, 0, sizeof(x));
}
}; Matrx mul(const Matrx &lhs, const Matrx &rhs){
Matrx c;
c.init();
for(int i = 0; i < 2; ++i){
for(int j = 0; j < 2; ++j){
for(int k = 0; k < 2; ++k){
c.x[i][j] += lhs.x[i][k] * rhs.x[k][j];
c.x[i][j] %= mod;
}
}
}
return c;
} Matrx fast_pow(Matrx x, LL b){
Matrx ans, k = x;
ans.x[0][0] = ans.x[10][0] = ans.x[0][1] = 1;
ans.x[1][1] = 0; while(b){
if(b & 1){
ans = mul(ans, k);
}
b >>= 1;
k = mul(k, k);
} return ans;
} int main(){
Matrx mx;
mx.x[0][0] = mx.x[0][1] = mx.x[1][0] = 1;
mx.x[1][1] = 0;
Matrx nx;
nx.init();
nx.x[0][0] = 1; nx.x[0][1] = 0;
int T; cin >> T;
while(T--){
LL n;
scanf("%d %lld", &m, &n);
printf("%d ", m);
if(1LL == n){ printf("1\n"); continue; }
else if(2LL == n){ printf("1\n"); continue; }
Matrx ans = fast_pow(mx, n-2);
ans = mul(ans, nx);
printf("%lld\n", ans.x[0][0]);
}
return 0;
}

  

这也是运用矩阵快速幂的思想写的。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <stack>
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 100 + 5;
const int mod = 1e9;
const char *mark = "+-*";
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
map<LL, LL> ans; LL dfs(LL n){
if(ans.count(n)) return ans[n];
LL k = n/2LL;
if(n % 2 == 0) return ans[n] = (dfs(k) * dfs(k) + dfs(k-1)* dfs(k-1)) % mod;
else return ans[n] = (dfs(k) * dfs(k+1) + dfs(k-1) * dfs(k)) % mod;
} int main(){
ans[0] = ans[1] = 1;
int T; cin >> T;
while(T--){
LL x;
scanf("%d %lld", &m, &x);
printf("%d %lld\n", m, dfs(x-1));
}
return 0;
}