prufer是无根树的一种编码方式,一棵无根树和一个prufer编码唯一对应,也就是一棵树有唯一的prufer编码,而一个prufer编码对应一棵唯一的树。
第一部分:树编码成prufer序列。
树编码成prufer序列的方式是:prufer序列初始为空。每次从树上选出一个编号最小的叶子节点,然后将与该叶子节点相邻的那个节点的编号写入prufer序列的末尾,之后从树上删掉这个叶子节点。循环这个步骤n-2次,最后得到一个长度为n-2的prufer序列(此时树中只有一条边,我们就不管它了)。
我们以下面这个树为例。
step1:编号最小的叶子节点为3,将与其相连的节点1加到prufer的末尾,并将3从树上删掉,此时prufer序列为(1),树变为如下:
step2:编号最小的叶子节点为1,将与其相连的节点2加到prufer末尾,此时prufer序列为(1,2),并将节点1删掉,树变为如下:
step3:编号最小的叶子节点为4,将与其相连的节点2加入到prufer的末尾,此时prufer序列为(1,2,2),并将节点4删掉,树变为如下:
此时,结束,我们得到了prufer序列为(1,2,2)。
第二部分:由prufer序列得到树。首先,将每个节点的度数设为1加上该节点在prufer序列中出现的次数。然后以下循环执行n-2次。第i次循环,选择此时度数为1的编号最小的节点u,将其与此时prufer序列的第i个元素v连边,然后将u和v的度数都减去1。这n-2次执行完之后,仅剩下两个节点他们的度数都是1,将这两个点连边,这样就得到一个有n-1条边的树。
下面,我们以上面的prufer序列为例还原这个树。初始的prufer为(1,2,2),初始的度数为:
step1:选择度数为1的最小编号的节点3与prufer的第一个元素1连边,并将3和1的度数都减去1,得到树和新的度数:
step2:选择度数为1的最小节点1和prufer中的第二个元素2连边,并将1和2的度数都减去1,得到树和新的度数:
step3:选择度数为1的最小节点4和prufer中的第三个元素2连边,并将4和2的度数都减去1,得到树和新的度数:
最后,将仅有的度数为1的两个节点2和5,连边,得到: