CAS(Compare-and-Swap),即比较并替换,java并发包中许多Atomic的类的底层原理都是CAS。
它的功能是判断内存中某个地址的值是否为预期值,如果是就改变成新值,整个过程具有原子性。
具体体现于sun.misc.Unsafe类中的native方法,调用这些native方法,JVM会帮我们实现汇编指令,这些指令是CPU的原子指令,因此具有原子性。
public class CASDemo { public static void main(String[] args) { //初始值5
AtomicInteger atomicInteger = new AtomicInteger(5); //和5比较,设置为10
System.out.println("预期值:5,当前值:"+atomicInteger);
System.out.println("是否设置成功:"+atomicInteger.compareAndSet(5, 10));
//和5比较,设置为15
System.out.println("预期值:5,当前值:"+atomicInteger);
System.out.println("是否设置成功:"+atomicInteger.compareAndSet(5, 15)); System.out.println("当前值:"+atomicInteger);
}
}
输出为:
预期值:5,当前值:5
是否设置成功:true
预期值:5,当前值:10
是否设置成功:false
当前值:10
下面看一下getAndAddInt在底层Unsafe类中的代码(自旋锁),运用到了CAS
//va1为对象,var2为地址值,var4是要增加的值,var5为当前地址中最新的值
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4)); return var5;
}
首先通过volatile的可见性,取出当前地址中的值,作为期望值。如果期望值与实际值不符,就一直循环获取期望值,直到set成功。
适用场景:
1. CAS 适合简单对象的操作,比如布尔值、整型值等;
2. CAS 适合冲突较少的情况,如果太多线程在同时自旋,那么长时间循环会导致 CPU 开销很大;
CAS的缺点:
1. CPU开销过大 : 在并发量比较高的情况下,如果许多线程反复尝试更新某一个变量,却又一直更新不成功,循环往复,会给CPU带来很到的压力。
2. 不能保证代码块的原子性:CAS机制所保证的知识一个变量的原子性操作,而不能保证整个代码块的原子性。比如需要保证3个变量共同进行原子性的更新,就不得不使用synchronized了。
3. ABA问题:如果内存地址V初次读取的值是A,在CAS等待期间它的值曾经被改成了B,后来又被改回为A,那CAS操作就会误认为它从来没有被改变过。
ABA问题以及解决:使用带版本号的原子引用AtomicStampedRefence<V>,或者叫时间戳的原子引用,类似于乐观锁。
0 // ABA问题及解决方式
1 public class ABADemo { private static AtomicReference<String> atomicReference = new AtomicReference<>("A");
private static AtomicStampedReference<String> stampReference = new AtomicStampedReference<>("A",1); public static void main(String[] args){
new Thread(()->{
//获取到版本号
int stamp = stampReference.getStamp();
System.out.println("t1获取到的版本号:"+stamp);
try {
//暂停1秒,确保t1,t2版本号相同
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
atomicReference.compareAndSet("A","B");
atomicReference.compareAndSet("B","A"); stampReference.compareAndSet("A","B",stamp,stamp+1);
stampReference.compareAndSet("B","A",stamp+1,stamp+2);
System.out.println("t1线程ABA之后的版本号:"+stampReference.getStamp()); },"t1").start(); new Thread(()->{
//获取到版本号
int stamp = stampReference.getStamp();
System.out.println("t2获取到的版本号:"+stamp);
try {
//暂停2秒,等待t1执行完成ABA
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.print("普通原子类无法解决ABA问题: ");
System.out.println(atomicReference.compareAndSet("A","C")+"\t"+atomicReference.get());
System.out.print("版本号的原子类解决ABA问题: ");
System.out.println(stampReference.compareAndSet("A","C",stamp,stamp+1)+"\t"+stampReference.getReference()); },"t2").start();
}
}
输出结果:普通原子引用类在另一个线程完成ABA之后继续修改(把A改成了C),带版本号原子引用有效的解决了这个问题。
t1获取到的版本号:1
t2获取到的版本号:1
t1线程ABA之后的版本号:3
普通原子类无法解决ABA问题: true C
版本号的原子类解决ABA问题: false A