孙业毅 原创作品 转载请注明出处
《Linux内核分析》MOOC课程:http://mooc.study.163.com/course/USTC-1000029000
第二讲 操作系统是如何工作的?
@2015.03
-------------------------------------------------------------------------------------------------------------------
1. mykernel简介
这个是由孟老师建立的一个用于开发您自己的操作系统内核的平台,它基于Linux Kernel 3.9.4 source code. 您可以在这里找到mykernel的源代码 https://github.com/mengning/mykernel 并按照上面的指南部属到您的系统上。您也可以使用实验楼http://www.shiyanlou.com/courses/195提供的虚拟机,它上面已经部属好了这个平台,按照实验2的步骤即可找到并运行这个平台框架。本文的实验就是在实验楼完成的。
使用实验楼的虚拟机打开shell,输入下面的两条命令,即可以启动mykernel,
l cd LinuxKernel/linux-3.9.4
l qemu -kernel arch/x86/boot/bzImage
这是运行截图:
在QEMU窗口,我们可以看到一个简单的操作系统已经跑起来了,当然这个系统很简单,只是不停的输出一些字符串:>>>>>my_timer_handler here <<<<< 和 my_start_kernel here 。
然后关闭qemu窗口,cd mykernel ,我们可以找到输出这些字符串的源代码mymain.c和myinterrupt.c
打开这两个文件,我们可以看到,在mymain.c的my_start_kernel函数中
有一个循环,不停的输出 my_start_kernel here.
在myinterrupt.c中,可以看到一个会被时钟中断周期调用的函数my_timer_handler ,在这个函数里,会输出类似>>>>>my_timer_handler here <<<<< 的字符串。
这两个函数的输出,就是前面我们这QEMU窗口中看到的内容。
通过这个实验我们可以知道,mykernel系统启动后,会
- 调用my_start_kernel函数
- 周期性的调用my_timer_handler函数
我们只要编写这两个函数,完成系统进程的初始化和进程的轮转调度,就可以写出一个简单的操作系统了!
2. 一个简单的时间片轮转多道程序
通过上面的分析,我们再来看一个稍微复杂一点的实验,这个实验也就是扩展了my_start_kernel和my_timer_handler函数,模拟了一个基于时间片轮转的多道程序。
我们先做实验,再来分析代码。
(1)从这里获取实验用的源代码,https://github.com/mengning/mykernel,主要就这三个文件:mypcb.h,myinterrupt.c和mymain.c
(2)在实验楼的虚拟机环境中,将这三个文件拷贝到mykernel平台中,即要覆盖前文所述的mykernel文件夹下mymain.c和myinterrupt.c,并新增mypcb.h
(3)回到 LinuxKernel/linux-3.9.4文件夹,使用下面的命令编译、运行
- make allnoconfig
- make
- qemu -kernel arch/x86/boot/bzImage
效果如下:
从QEMU的图中可以看出,系统从执行process1切换到process2的过程。
(4)源代码分析
这里主要分析上面实验中改写的三个文件,其作用简述如下,
- mypcb.h : 进程控制块PCB结构体定义。
- mymain.c: 初始化各个进程并启动0号进程。
- myinterrupt.c:时钟中断处理和进程调度算法。
详细分析:首先打开mypcb.h,
/* * linux/mykernel/mypcb.h * * Kernel internal PCB types * * Copyright (C) 2013 Mengning * */ #define MAX_TASK_NUM 4 #define KERNEL_STACK_SIZE 1024*8 /* CPU-specific state of this task */ struct Thread { unsigned long ip; unsigned long sp; }; typedef struct PCB{ int pid; volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ char stack[KERNEL_STACK_SIZE]; /* CPU-specific state of this task */ struct Thread thread; unsigned long task_entry; struct PCB *next; }tPCB; void my_schedule(void);
在这个文件里,定义了 Thread 结构体,用于存储当前进程中正在执行的线程的ip和sp,PCB结构体中的各个字段含义如下
pid:进程号
state:进程状态,在模拟系统中,所有进程控制块信息都会被创建出来,其初始化值就是-1,如果被调度运行起来,其值就会变成0
stack:进程使用的堆栈
thread:当前正在执行的线程信息
task_entry:进程入口函数
next:指向下一个PCB,模拟系统中所有的PCB是以链表的形式组织起来的。
这里还有一个函数的声明 my_schedule,它的实现在my_interrupt.c中,在mymain.c中的各个进程函数会根据一个全局变量的状态来决定是否调用它,从而实现主动调度。
再来看看文件 mymain.c ,
/* * linux/mykernel/mymain.c * * Kernel internal my_start_kernel * * Copyright (C) 2013 Mengning * */ #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" tPCB task[MAX_TASK_NUM]; tPCB * my_current_task = NULL; volatile int my_need_sched = 0; void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ for(i=1;i<MAX_TASK_NUM;i++) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].state = -1; task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1]; task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile( "movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */ "pushl %1\n\t" /* push ebp */ "pushl %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to eip */ "popl %%ebp\n\t" : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } void my_process(void) { int i = 0; while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }
正如前文所述,这里的函数 my_start_kernel 是系统启动后,最先调用的函数,在这个函数里完成了0号进程的初始化和启动,并创建了其它的进程PCB,以方便后面的调度。在模拟系统里,每个进程的函数代码都是一样的,即 my_process 函数,my_process 在执行的时候,会打印出当前进程的 id,从而使得我们能够看到当前哪个进程正在执行。
另外,在 my_process 也会检查一个全局标志变量 my_need_sched,一旦发现其值为 1 ,就调用 my_schedule 完成进程的调度。
0号线程的启动,采用了内联汇编代码完成,详细参见源码中的注释。
再来看看最后一个文件,myinterrupt.c
/* * linux/mykernel/myinterrupt.c * * Kernel internal my_timer_handler * * Copyright (C) 2013 Mengning * */ #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. * it runs in the name of current running process, * so it use kernel stack of current running process */ void my_timer_handler(void) { #if 1 if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; #endif return; } void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { /* switch to next process */ asm volatile( "pushl %%ebp\n\t" /* save ebp */ "movl %%esp,%0\n\t" /* save esp */ "movl %2,%%esp\n\t" /* restore esp */ "movl $1f,%1\n\t" /* save eip */ "pushl %3\n\t" "ret\n\t" /* restore eip */ "1:\t" /* next process start here */ "popl %%ebp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); } else { next->state = 0; my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to new process */ asm volatile( "pushl %%ebp\n\t" /* save ebp */ "movl %%esp,%0\n\t" /* save esp */ "movl %2,%%esp\n\t" /* restore esp */ "movl %2,%%ebp\n\t" /* restore ebp */ "movl $1f,%1\n\t" /* save eip */ "pushl %3\n\t" "ret\n\t" /* restore eip */ : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
这里 my_timer_handler 函数会被内核周期性的调用,每调用1000次,就去将全局变量my_need_sched的值修改为1,通知正在执行的进程执行调度程序my_schedule。在my_schedule函数中,完成进程的切换。进程的切换分两种情况,一种情况是下一个进程没有被调度过,另外一种情况是下一个进程被调度过,可以通过下一个进程的state知道其状态。进程切换依然是通过内联汇编代码实现,无非是保存旧进程的eip和堆栈,将新进程的eip和堆栈的值存入对应的寄存器中,详见代码中的注释。
3.总结
通过本讲的学习和实验,我们知道操作系统的核心功能就是:进程调度和中断机制,通过与硬件的配合实现多任务处理,再加上上层应用软件的支持,最终变成可以使用户可以很容易操作的计算机系统。