基于mykernel完成时间片轮转多道程序内核

时间:2021-04-30 17:18:04

学号093 原创作品,转载请注明出处。

本实验资源来自  https://github.com/mengning/linuxkernel/ 


 

实验目的

  • 分析进程的启动和进程的切换机制
  • 理解操作系统是如何工作

实验环境

  • 实验楼

实验步骤 

  • cd LinuxKernel/linux-3.9.4
  • rm -rf mykernel
  • patch -p1 < ../mykernel_for_linux3.9.4sc.patch #打补丁
  • make allnoconfig
  • make  #编译  

      基于mykernel完成时间片轮转多道程序内核

 

  • qemu -kernel arch/x86/boot/bzImage   #从qemu窗口中可以看到my_start_kernel在执行,同时my_timer_handler时钟中断处理程序周期性执行。

    基于mykernel完成时间片轮转多道程序内核

 

  • cd mykernel   #可以看到qemu窗口输出的内容的代码mymain.c和myinterrupt.c

  至此,我们已经初始化好了系统环境。下面就让我们开始编写内核实现时间片轮转多道程序。

内核分析

  从孟宁老师的主页上获取源码 https://github.com/mengning/mykernel 

  下载mymain.c ,myinterrupt.c 和 mypcb.h三个文件。

       基于mykernel完成时间片轮转多道程序内核

  重新编译。#重新编译之前要make clean

  基于mykernel完成时间片轮转多道程序内核

 

mypcb.h 

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*2 
/* CPU-specific state of this task */
struct Thread {
    unsigned long       ip;
    unsigned long       sp;
};

typedef struct PCB{
    int pid;
    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
    unsigned long stack[KERNEL_STACK_SIZE];
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long   task_entry;
    struct PCB *next;
}tPCB;

void my_schedule(void);

  两个宏定义,  

    MAX_TASK_NUM 4 定义了最大任务数

    KERNEL_STACK_SIZE 1024*2 定义了堆栈的内核大小

  Thread结构体里的ip用来存储当前指令,sp用来存储栈顶位置。

  PCB结构体里面存储了进程的id,状态,以及next指针,可以形成pcb链。

mymain.c

/*
 *  linux/mykernel/mymain.c
 *
 *  Kernel internal my_start_kernel
 *
 *  Copyright (C) 2013  Mengning
 *
 */
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;
void my_process(void);

void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
    //*(&task[i].stack[KERNEL_STACK_SIZE-1] - 1) = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
    task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
        "movl %1,%%esp\n\t"     /* set task[pid].thread.sp to esp */
        "pushl %1\n\t"             /* push ebp */
        "pushl %0\n\t"             /* push task[pid].thread.ip */
        "ret\n\t"                 /* pop task[pid].thread.ip to eip */
        : 
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
    );
} 

int i = 0;
void my_process(void)
{    
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }     
    }
}

   首先是内核加载时候进行的初始化函数my_start_kernel

     该函数首先初始化了一个id为0的进程,状态为可运行状态,设置进程的入口地址为my_process函数的地址,thread.sp指向stack[]的尾地址,最后将next指向自己。

     接下来for循环创建了pid为1,2,3的三个进程。并且将这4个进程连在一起。

     接下来就是最重要的内嵌汇编代码

asm volatile(
        "movl %1,%%esp\n\t"     /* set task[pid].thread.sp to esp */
        "pushl %1\n\t"             /* push ebp */
        "pushl %0\n\t"             /* push task[pid].thread.ip */
        "ret\n\t"                 /* pop task[pid].thread.ip to eip */
        : 
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
    );

      首先把第一个输入赋给esp寄存器,即task[pid].thread.sp 的值给esp 。

      然后 task[pid].thread.sp 压栈,因为是空栈,esp的值和ebp的值相同。

      接着 task[pid].thread.ip 压栈

      最后,把ip出栈赋值给eip

 myinterrupt.c

/*
 *  linux/mykernel/myinterrupt.c
 *
 *  Kernel internal my_timer_handler
 *
 *  Copyright (C) 2013  Mengning
 *
 */
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
void my_timer_handler(void)
{
#if 1
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    } 
    time_count ++ ;  
#endif
    return;     
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
        return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {        
        my_current_task = next; 
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  
        /* switch to next process */
        asm volatile(   
            "pushl %%ebp\n\t"       /* save ebp */
            "movl %%esp,%0\n\t"     /* save esp */
            "movl %2,%%esp\n\t"     /* restore  esp */
            "movl $1f,%1\n\t"       /* save eip */ 
            "pushl %3\n\t" 
            "ret\n\t"               /* restore  eip */
            "1:\t"                  /* next process start here */
            "popl %%ebp\n\t"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        ); 
    }  
    return; 
}

   定义了两个函数my_timer_handler()函数和my_schedule()函数

      my_time_handler()就是时间为1000时将my_need_sched设置为1,这样就可以使my_process函数调用my_schedule函数来切换进程。

      让我们看啊可能my_schedule函数中的内嵌汇编代码

asm volatile(    
           "pushl %%ebp\n\t"         /* save ebp */
           "movl %%esp,%0\n\t"     /* save esp */
           "movl %2,%%esp\n\t"     /* restore  esp */
           "movl $1f,%1\n\t"       /* save eip */    
           "pushl %3\n\t" 
           "ret\n\t"                 /* restore  eip */
           "1:\t"                  /* next process start here */
           "popl %%ebp\n\t"
           : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
           : "m" (next->thread.sp),"m" (next->thread.ip)
       ); 

    首先明白一个概念,当 当前进程变为下一个进程时,那么下一个进程就变成当前进程,当前进程变为下一个进程。就好似老师上课说的,再捡一个孩子也是不乖的。

    理解这个概念后,汇编代码就好理解了,保存下一条指令的地址,切换到另一个栈,然后执行,当切换回来时,把保存的指令弹出,这样就可以做到进程之间的切换。

总结

    操作系统是如何工作的?

      • 存储程序计算机
      • 函数调用堆栈
      • 中断      

    通过实验了解了汇编语言的基本指令,以及对计算机的进程切换有了大致了解。